K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 3 2022

Giải thích giúp mình

11 tháng 10 2020

Ta có: \(\frac{4n^3+11n^2+5n+5}{n+2}=\frac{\left(n+2\right)\left(4n^2+3n-1\right)+7}{n+2}=4n^2+3n-1+\frac{7}{n+2}\)

Để 4n+ 11n2 + 5n + 5 chia hết cho n + 2 thì \(\frac{7}{n+2}\inℤ\Rightarrow7⋮n+2\Rightarrow n+2\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)

Ta lập bảng giá trị:

\(n+2\)\(1\)\(-1\)\(7\)\(-7\)
\(n\)\(-1\)\(-3\)\(5\)\(-9\)

Vậy \(n\in\left\{-1;-3;5;-9\right\}\)thì 4n+ 11n2 + 5n + 5 chia hết cho n + 2

1: \(\Leftrightarrow3n^3+n^2+9n^2+3n-3n-1-4⋮3n+1\)

\(\Leftrightarrow3n+1\in\left\{1;4;2;-2;-1;-4\right\}\)

\(\Leftrightarrow3n\in\left\{0;3;-3\right\}\)

hay \(n\in\left\{0;1;-1\right\}\)

11 tháng 9 2018

Giúp mình với gianroigianroigianroigianroi

23 tháng 9 2018

ếu giúp bạn tick nha

\(\Leftrightarrow4n^2-n+12n-3+7⋮4n-1\)

\(\Leftrightarrow4n-1\in\left\{-1;7\right\}\)

hay \(n\in\left\{0;2\right\}\)

2 tháng 1 2022

n=2

8 tháng 10 2017

B1: Giải:

\(n^4+6n^3+11n^2+6n\)

= \(n^4+n^3+5n^3+5n^2+6n^2+6n\)

= \(n^3\left(n+1\right)+5n^2\left(n+1\right)+6n\left(n+1\right)\)

= \(\left(n+1\right)\left(n^3+5n^2+6n\right)\)

= \(\left(n+1\right)\left(n^3+2n^2+3n^2+6n\right)\)

= \(\left(n+1\right)\left[n^2\left(n+2\right)+3n\left(n+2\right)\right]\)

= \(\left(n+1\right)\left(n+2\right)\left(n^2+3n\right)\)

= \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)

Vì n là số tự nhiên nên n , n+1 , n+2 , n+3 là 4 số tự nhiên liên tiếp.

Trong 4 số tự nhiên liên tiếp thì chắc chắn có 2 số chẵn liên tiếp, một số sẽ chia hết cho 4, số còn lại tất nhiên chia hết cho 2, do đó tích 4 số tự nhiên liên tiếp sẽ chia hết cho 8. (1)

Trong 4 số tự nhiên liên tiếp chắc chắn có 1 số chia hết cho 3, do đó tích của 4 số tự nhiên liên tiếp sẽ chia hết cho 3. (2)

Từ (1) và (2) suy ra tích của 4 số tự nhiên liên tiếp sẽ chia hết cho 3 và 8.

Mà 3 và 8 là 2 số nguyên tố cùng nhau nên tích của 4 số tự nhiên liên tiếp chia hết cho 24 ( = 8.3 )

Vậy \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)⋮24\)

Hay \(n^4+6n^3+11n^2+6n⋮24\left(n\in N\right)\)