Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(t=3sinx-4cosx=5\left(\frac{3}{5}sinx-\frac{4}{5}cosx\right)=5sin\left(x-a\right)\)
\(\Rightarrow-5\le t\le5\)
\(\Rightarrow y=t^2-t+m\)
\(y>0\) ; \(\forall m\Leftrightarrow t^2-t+m>0\Leftrightarrow m>-t^2+t\) ; \(\forall m\)
\(\Leftrightarrow m>\max\limits_{\left[-5;5\right]}\left(-t^2+t\right)\)
Mà \(-t^2+t=-\left(t-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)
\(\Rightarrow m>\frac{1}{4}\)
\(y'=3cosx-4sinx-\frac{1}{cos^2x}\)
\(\Rightarrow y'\left(\frac{\pi}{6}\right)=3cos\left(\frac{\pi}{6}\right)-4sin\left(\frac{\pi}{6}\right)-\frac{1}{cos^2\left(\frac{\pi}{6}\right)}=\frac{-20+9\sqrt{3}}{6}\)
b/ \(y'=-8x^3+\frac{3}{x^4}-\frac{1}{x^2}\)
Lời giải:
Đặt \(3\sin x+4\cos x=t\)
Áp dụng BĐT Bunhiacopxky:
\(t^2=(3\sin x+4\cos x)^2\leq (3^2+4^2)(\sin ^2x+\cos ^2x)=25\)
\(\Rightarrow -5\leq t\leq 5\)
Với $t\in [-5;5]$ ta có:
\(y=3t^2+4t+1\leq 3.25+4.5+1=96\)
Mặt khác: \(y=3t^2+4t+1=3(t+\frac{2}{3})^2-\frac{1}{3}\)
\((t+\frac{2}{3})^2\geq 0, \forall t\in [-5;5]\Rightarrow y\geq -\frac{1}{3}\)
Vậy \(y_{\min}=\frac{-1}{3}; y_{\max}=96\)
Đáp án D
Đặt t = 3sin x - 4cos x => -5 ≤ t ≤ 5 (dùng bất đẳng thức bunhiacopxki)
Ta có: y = (3sin x – 4cos x)2 – 6sin x + 8cos x
= t2 – 2t = (t – 2)2 -1
Do -5 ≤ t ≤ 5 => 0 ≤ (t – 2)2 ≤ 36 => min y = -1
Suy ra yêu cầu bài toán -1 ≥ 2m - 1 ⇔ m ≤ 0.
\(4cosx-3sinx=5\left(\frac{4}{5}cosx-\frac{3}{5}sinx\right)=5cos\left(x+a\right)\) với \(cosa=\frac{4}{5}\)
\(\Rightarrow-5\le4cosx-3sinx\le5\)
\(\Rightarrow\) Pt vô nghiệm khi: \(\left[{}\begin{matrix}\left(m^3-4m+3\right)x+m-4>5\\\left(m^3-4m+3\right)+m-4< -5\end{matrix}\right.\) \(\forall x\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}m^3-4m+3=0\\m-4>5\end{matrix}\right.\\\left\{{}\begin{matrix}m^3-4m+3=0\\m-4< -5\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m=\frac{-1-\sqrt{13}}{2}\)