Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, 2x\(^2\) -8=0
2x\(^2\) =8
x\(^2\) =4 \(\Rightarrow\) \(\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
2, 3x\(^2\) -75=0
3x\(^2\) = 75
x\(^2\) = 25 \(\Rightarrow\left[{}\begin{matrix}x=5\\x=-5\end{matrix}\right.\)
3, (x+3)\(^2\) =4
\(\Rightarrow\left[{}\begin{matrix}x+3=2\\x+3=-2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-1\\x=-5\end{matrix}\right.\)
4, (x-1)\(^2\)-81=0
(x-1)\(^2\) =81 \(\Rightarrow\left[{}\begin{matrix}x-1=9\\x-1=-9\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=10\\x=-8\end{matrix}\right.\)
5, x\(^2\) +4x-21=0
x(x+4)=21
\(\Rightarrow\) \(\left\{{}\begin{matrix}x=3\\x+4=7\end{matrix}\right.\) \(\Rightarrow x=3\)
6, x\(^3\) =25x
x(x\(^2\) - 5\(^2\) )=0
x(x-5)(x+5)=0
\(\Rightarrow\left\{{}\begin{matrix}x=0\\x+5=0\\x-5=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=0\\x=-5\\x=5\end{matrix}\right.\)
8, x\(^3\) - 49x=0
x(x-7)(x+7)=0
\(\Rightarrow\left\{{}\begin{matrix}x=0\\x-7=0\\x+7=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=0\\x=7\\x=-7\end{matrix}\right.\)
1)
\(2x^2-8=0\\ \Leftrightarrow2\left(x^2-4\right)=0\\ \Leftrightarrow2\left(x-2\right)\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
Vậy...
2)
\(3x^2-75=0\\\Leftrightarrow 3\left(x^2-25\right)=0\\ \Leftrightarrow3\left(x-5\right)\left(x+5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-5=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-5\end{matrix}\right.\)
Vậy...
3)
\(\left(x+3\right)^2=4\\ \Leftrightarrow\left(x+3\right)^2-4=0\\ \Leftrightarrow\left(x+3-2\right)\left(x+3+2\right)=0\\\Leftrightarrow \left(x+1\right)\left(x+5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x+1=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-5\end{matrix}\right.\)
Vậy...
4)
\(\left(x-1\right)^2-81=0\\ \Leftrightarrow\left(x-1-9\right)\left(x-1+9\right)=0\\\Leftrightarrow \left(x-10\right)\left(x+8\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-10=0\\x+8=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=10\\x=-8\end{matrix}\right.\)
Vậy...
\(5x^2+5y^2+8xy-2x+2y+2=0\)
\(\Leftrightarrow\left(4x^2+8xy+4y^2\right)+\left(x^2-2x+1\right)+\left(y^2+2y+1\right)=0\)
\(\Leftrightarrow4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)
Ta thấy \(VT\ge0\forall x;y\) nên dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x=1\\y=-1\end{cases}}\)Tha vào M ta được :
\(M=\left(1-1\right)^{2015}+\left(1-2\right)^{2016}+\left(-1+1\right)^{2017}=1\)
a. \(\left(3x-5\right)^2-\left(x+1\right)^2=0\Leftrightarrow\left(3x-5+x+1\right)\left(3x-5-x-1\right)=0\Leftrightarrow\left(4x-4\right)\left(2x-6\right)=0\Leftrightarrow\left[{}\begin{matrix}4x-4=0\\2x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)
Vậy ...
b. \(\left(5x-4\right)^2-49x^2=0\Leftrightarrow\left(5x-4\right)^2-\left(7x\right)^2=0\Leftrightarrow\left(5x-4-7x\right)\left(5x-4+7x\right)=0\Leftrightarrow\left(-2x-4\right)\left(12x-4\right)=0\Leftrightarrow\left[{}\begin{matrix}-2x-4=0\\12x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{1}{3}\end{matrix}\right.\)
Vậy ...
c. \(4x^3-36x=0\Leftrightarrow4x\left(x^2-9\right)=0\Leftrightarrow4x\left(x-3\right)\left(x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}4x=0\\x-3=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\\x=-3\end{matrix}\right.\)
Vậy ...
d. \(\left(2x+3\right)\left(x-1\right)+\left(2x-3\right)\left(1-x\right)=0\Leftrightarrow\left(2x+3\right)\left(x-1\right)-\left(2x-3\right)\left(x-1\right)=0\Leftrightarrow\left(x-1\right)\left(2x+3-2x+3\right)=0\Leftrightarrow6\left(x-1\right)=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)
Vậy ...
1) \(\left(5x-4\right)^2-49x^2\)
\(=\left(5x-4\right)^2-\left(7x\right)^2\)
\(=\left(5x-4+7x\right)\left(5x-4-7x\right)\)( hằng đẳng thức số 3)
\(=\left(-2x-4\right)\left(12x-4\right)\)
2)\(\left(3x+1\right)^2-4\left(x-2\right)^2\)
\(=\left(3x+1\right)^2-\left(2\left(x-2\right)\right)^2\)
\(=\left(3x+1\right)^2-\left(2x-2\right)^2\)
\(=\left(3x+1-2x+4\right)\left(3x+1+2x-4\right)\)
\(=\left(x+5\right)\left(5x-3\right)\)
3) \(9\left(2x+3\right)^2-4\left(x+1\right)^2\)
\(=\left(3\left(2x+3\right)\right)^2-\left(2\left(x+1\right)\right)^2\)
\(=\left(6x+9\right)^2-\left(2x+2\right)^2\)
\(=\left(6x+9-2x-2\right)\left(6x+9+2x+2\right)\)
\(=\left(4x+7\right)\left(8x+11\right)\)
\(4x^3-36x=0\)
\(x.\left[\left(2x\right)^2-6^2\right]=0\)
\(x.\left(2x-6\right)\left(2x+6\right)=0\)
\(\Rightarrow\)\(\orbr{\begin{cases}x=0\\2x-6=0\end{cases}}\)hoặc \(2x+6=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=3\end{cases}}\)hoặc \(x=-3\)
KL:...............................................
\(49x_1^2-25\left(x_2+1\right)^2=0\)
\(\Rightarrow\left(7x_1\right)^2-25\left(x_2+1\right)^2=0\)
Xét \(\left(7x_1\right)^2\ge0\) ; \(25\left(x_2+1\right)^2\ge0\)
\(\Rightarrow\left\{{}\begin{matrix}\left(7x_1\right)^2=0\\25\left(x_2+1\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x_1=0\\x_2=-1\end{matrix}\right.\)
\(6x^2-41x+48=0\)
\(\Leftrightarrow3x\left(2x-3\right)-16\left(2x-3\right)=0\)
\(\Leftrightarrow\left(2x-3\right)\left(3x-16\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\3x-16=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=\dfrac{16}{3}\end{matrix}\right.\)
\(6x^2-41x+48=0\)
\(\Leftrightarrow6x^2-9x-32x+48=0\)
\(\Leftrightarrow3x\left(2x-3\right)-16\left(2x-3\right)=0\)
\(\Leftrightarrow\left(3x-16\right)\left(2x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-16=0\\2x-3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}3x=16\Rightarrow x=\dfrac{16}{3}\\2x=3\Rightarrow x=\dfrac{3}{2}\end{matrix}\right.\)
Vậy.......................................
\(=\left(4x^2-7x-50\right)^2-x^2\left(16x^2+56x+49\right)\)
\(=\left(4x^2-7x-50\right)^2-x^2\left(4x+7\right)^2\)
\(=\left(4x^2-7x-50-4x^2-7x\right)\left(4x^2-7x-50+4x^2+7x\right)\)
\(=\left(-14x-50\right)\left(8x^2-50\right)\)
\(=-4\left(7x+25\right)\left(2x-5\right)\left(2x+5\right)\)
49x2 - 4 = 0
<=> (7x)2 - 22 = 0
<=> (7x - 2)(7x + 2) = 0
<=> \(\left[{}\begin{matrix}7x-2=0\\7x+2=0\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=\dfrac{2}{7}\\x=-\dfrac{2}{7}\end{matrix}\right.\)
\(49x^2-4=0\)
\(\Rightarrow49x^2=4\)
\(\Rightarrow x^2=\dfrac{4}{49}\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{2}{7}\\x=-\dfrac{2}{7}\end{matrix}\right.\)