Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x.4\right)^2=\frac{x^{12}}{x^5}=>x^2.4^2=x^{12}:x^5=>x^2.16=x^{12-5}=>x^2.16=x^7\)
=>x5=16 chắc sai :v
b/ \(x^{10}=25.x^8=>x^{10}:x^8=25=>x^2=25=>x=5\)
1) 2x . 4 = 128
2x = 128 : 4
2x = 32
2x = 25
=> x = 5
2) (2x + 1)3 = 125
(2x + 1)3 = 53
=> 2x + 1 = 5
2x = 5 - 1
2x = 4
x = 2
các bài khác bạn tự làm nha
Bài 1:
a)12,5 x (-5/7) + 1,5 x (-5/7)
=-5/7*(12,5+1,5)
=-5/7*14
=-10
b)(-1/4) x (6|2/11) + 3|9/11 x (-1/4)
=-1/4*(68/11+42/11)
=-1/4*10
=-5/2
c tương tự
d)\(\frac{9^8\cdot4^3}{27^4\cdot6^5}=\frac{\left(3^2\right)^8\cdot\left(2^2\right)^3}{\left(3^3\right)^4\cdot\left(2\cdot3\right)^5}=\frac{3^{16}\cdot2^6}{3^{12}\cdot2^5\cdot3^5}=\frac{3^{16}\cdot2^5\cdot2}{3^{16}\cdot3^1\cdot2^5}=\frac{2}{3}\)
Bài 2:
a)Ta có:
2800=(28)100=256100
8200=(82)100=64100
Vì 256100>64100 =>2800>8200
b)Ta có:
1245=(123)15=172815
Vì 62515<172815 =>62515<1245
a,12,5x(-5/7)+1,5x(-5/7)
=-125/14+-15/14
=-10
2,2mu800>8 mu 200
6254 lon hon 12
Ta có:\(\left(x-2\right)^{10}=\left(x-2\right)^{12}\)
\(\Leftrightarrow\left(x-2\right)^{12}-\left(x-2\right)^{10}=0\)
\(\Leftrightarrow\left(x-2\right)^{10}\left[\left(x-2\right)^2-1\right]=0\)
\(\Leftrightarrow\orbr{\begin{cases}\left(x-2\right)^{10}=0\\\left(x-2\right)^2-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\\left(x-2\right)^2=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x\in\left\{3;1\right\}\end{cases}}\)
Vậy \(x\in\left\{-1,2,3\right\}\)
b) Ta có: \(4^{x+2}+4^{x+3}+4^{x+4}+4^{x+5}=85.\left(2^{2016}:2^{2012}\right)\)
\(\Leftrightarrow4^{x+2}\left(1+4+4^2+4^3\right)=85.2^4\)
\(\Leftrightarrow4^{x+2}.85=1360\)
\(\Leftrightarrow4^x=16\)
\(\Leftrightarrow4^x=4^2\)
\(\Leftrightarrow x=2\)
Vậy x=2
\(\frac{45^7.9^3.27^{12}.12^8}{2^{26}.5^{14}.3^{16}.81^2}=\frac{\left(3^2\right)^7.5^7.\left(3^2\right)^3.\left(3^3\right)^{12}.\left(2^2\right)^8.3^8}{2^{26}.5^{14}.3^{16}.\left(3^4\right)^2}=\frac{3^{14}.5^7.3^6.3^{36}.2^{16}.3^8}{2^{26}.5^{14}.3^{16}.3^8}\)
\(=\frac{3^{64}.5^7.2^{16}}{2^{26}.5^{14}.3^{24}}=\frac{3^{40}.1.1}{2^{10}.5^7.1}=\frac{3^{40}}{2^{10}.5^7}\)