Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: \(5\cdot3^x=5\cdot3^4\)
nên \(3^x=3^4\)
hay x=4
2: \(7\cdot4^x=7\cdot4^3\)
nên \(4^x=4^3\)
hay x=3
3: \(8\cdot7^x=8\cdot7^6\)
nên \(7^x=7^6\)
hay x=6
\(\dfrac{81^4.3^{10}.27^5.3^{12}}{3^{18}.9^3.243^2}\)
=\(\dfrac{\left(3^4\right)^4.3^{10}.\left(3^3\right)^5.3^{12}}{3^{18}.\left(3^2\right)^3.\left(3^5\right)^2}\)
= \(\dfrac{3^{16}.3^{10}.3^{15}.3^{12}}{3^{18}.3^6.3^{10}}\)
\(=\dfrac{3^{53}}{3^{34}}\)
= \(3^{19}\)
a/
\(9.3^2.\frac{1}{81}.27=\frac{9.3^2.27}{81}=\frac{3^2.3^2.3^3}{3^4}=\frac{3^7}{3^4}=3^3\)
b/
\(4.32:\left(2^3.\frac{1}{16}\right)=4.32:\left(\frac{2^3}{16}\right)=4.32:\left(\frac{2^3}{2^4}\right)=4.32:\frac{1}{2}=4.32.2=4.64=4.4^3=4^4\)
c/
\(3^4.3^5:\frac{1}{27}=3^4.3^5.27=3^4.3^5.3^3=3^{12}\)
d/(ý bạn là (-2)^2 hay -2^2 , mình làm theo cách (-2)^2 nhé!)
\(2^2.4.\frac{32}{\left(-2\right)^2}.2^5=2^2.2^2.\frac{2^5}{2^2}.2^5=2^2.2^2.2^3.2^5=2^{12}\)
\(\dfrac{1}{9}.3^4.3^n=9^4\)
\(\dfrac{1}{9}.3^{4+n}=9^4\)
\(3^{4+n}=\dfrac{9^4}{\dfrac{1}{9}}\)
=> \(3^{4+n}=9^4.9\)
=> \(3^{4+n}=9^5\)
=> \(3^{4+n}=(3^2)^5\)
=> \(3^{4+n_{ }}=3^{10}\)
=> \(4+n=10\)
\(n=10-4\)
\(n=6\)
1) \(7.4^x=7.4^3\Leftrightarrow4^x=4^3;x=3\)
2) \(\frac{3}{2.5^x}=\frac{3}{2.5^{12}}\Leftrightarrow5^x=5^{12};x=12\)
\(2^x=2.2^8=2^9;x=9\)
4) \(5.3^x=7.3^5-2.3^5\Leftrightarrow5.3^x=3^5.\left(7-2\right)\)
\(\Leftrightarrow3^5.x=3^5.5;x=5\)
A) \(2.3^{x+2}+4.3^{x+1}=10.3^6\)
=> \(2.3.3^{x+1}+4.3^{x+1}=10.3^6\)
=> \(6.3^{x+1}+4.3^{x+1}=10.3^6\)
=> \(\left(6+4\right).3^{x+1}=10.3^6\)
=> \(10.3^{x+1}=10.3^6\)
=> \(3^{x+1}=3^6\)
=> \(x+1=6\)
=> \(x=6-1\)
=> \(x=5\)
Vậy \(x=5.\)
B) \(6.8^{x-1}+8^{x+1}=6.8^{19}+8^{21}\)
=> \(6.8^{x-1}+8^{x-1}.8^2=6.8^{19}+8^{19}.8^2\)
=> \(8^{x-1}.\left(6+8^2\right)=8^{19}.\left(6+8^2\right)\)
=> \(8^{x-1}=8^{19}\)
=> \(x-1=19\)
=> \(x=19+1\)
=> \(x=20\)
Vậy \(x=20.\)
Còn câu c) thì mình đang nghĩ nhé.
Chúc bạn học tốt!
a) \(\dfrac{1}{2}.\dfrac{1}{-3}+\dfrac{1}{-3}.\dfrac{1}{4}+\dfrac{1}{4}.\dfrac{1}{-5}+\dfrac{1}{-5}.\dfrac{1}{6}\)
\(=\dfrac{1}{-3}\left(\dfrac{1}{2}+\dfrac{1}{4}\right)+\dfrac{1}{-5}\left(\dfrac{1}{4}+\dfrac{1}{6}\right)\)
\(=\dfrac{1}{-3}.\dfrac{3}{4}+\dfrac{1}{-5}.\dfrac{5}{12}\)
\(=\left(-\dfrac{1}{4}\right)+\left(-\dfrac{1}{12}\right)\)
\(=-\dfrac{1}{3}\)
b) \(A=\dfrac{81^4.3^{10}.27^5.3^{12}}{3^{18}.9^3.243^2}\)
\(=\dfrac{9^8.9^8.9^{13}.9^{10}}{9^{16}.9^3.9^3}\)
\(=\dfrac{9^{39}}{9^{22}}\)
\(=9^{17}\)
\(A=\dfrac{81^4\cdot3^{10}\cdot27^5\cdot3^{12}}{3^{18}\cdot9^3\cdot243^2}=\dfrac{3^{16}\cdot3^{10}\cdot3^{15}\cdot3^{12}}{3^{18}\cdot3^6\cdot3^{10}}=\dfrac{3^{53}}{3^{34}}=3^{19}\)
Vậy A = 319
Ngân Hà làm đúng phần a) nhưng làm sai phần b) nên mk chỉ làm phần b) thôi
a: \(3^n\cdot3^4\cdot\dfrac{1}{9}=3^7\)
\(\Leftrightarrow3^n\cdot3^2=3^7\)
=>n+2=7
hay n=5
b: \(\Leftrightarrow2^n\cdot\left(\dfrac{1}{2}+4\right)=9\cdot2^5\)
\(\Leftrightarrow2^n=9\cdot2^5:\dfrac{9}{2}=9\cdot\dfrac{2}{9}\cdot2^5=2^6\)
hay n=6
\(\approx6,8\)