K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 1 2022

4+1=5. !!!!!!!!!!

17 tháng 1 2022
=5 nha tick mình nha
15 tháng 9 2018

1/4+1/4=1/2

1/4+1/2+1/4=1

1/4+3/4+3/4+1/4=1+1=2

9 tháng 6 2023

a,  \(2\dfrac{1}{3}+4\dfrac{1}{5}+4\dfrac{1}{3}\)

\(=\dfrac{7}{3}+\dfrac{21}{5}+\dfrac{13}{3}\)

\(=\dfrac{1}{3}\left(7+13\right)+\dfrac{21}{5}\)

\(=\dfrac{20}{3}+\dfrac{21}{5}=\dfrac{100+63}{15}=\dfrac{163}{15}\)

b, \(5\dfrac{3}{4}-4\dfrac{1}{2}.3\dfrac{7}{8}\)

\(=\dfrac{23}{4}-\dfrac{9}{2}.\dfrac{31}{8}\)

\(=\dfrac{23}{4}-\dfrac{279}{16}=\dfrac{92-279}{16}=-\dfrac{187}{16}\)

c, \(1\dfrac{1}{2}.3\dfrac{2}{3}.4\dfrac{3}{4}\)

\(=\dfrac{3}{2}.\dfrac{11}{3}.\dfrac{19}{4}=\dfrac{209}{8}\)

d, \(6\dfrac{4}{5}:2\dfrac{3}{4}:1\dfrac{1}{2}\)

\(=\dfrac{34}{5}:\dfrac{11}{4}:\dfrac{3}{2}\)

\(=\left(\dfrac{34}{5}.\dfrac{4}{11}\right).\dfrac{2}{3}=\dfrac{136}{55}.\dfrac{2}{3}=\dfrac{272}{165}\)

 

9 tháng 8 2015

a) A = 4/5.9 + 4/9.13 + 4/13.17 + ... + 4/41/45

A = 1/5 - 1/9 + 1/9 - 1/13 + 1/13 - 1/17 + ... + 1/41 - 1/45

A = 1/5 - 1/45

A = 8/45

b) B = ( 1 - 1/2 ) . ( 1 - 1/3 ) . ( 1 - 1/4 ) . ..... . ( 1 - 1/100 )

B = 1/2 . 2/3 . 3/4 . .... . 99/100

B = \(\frac{1.2.3.......99}{2.3.4......100}\)

B = 1/100

9 tháng 8 2015

B = \(\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{3}\right)+...+\left(1-\frac{1}{100}\right)\)

B = \(\frac{1}{2}.\frac{2}{3}.....\frac{99}{100}\)

B = \(\frac{1}{100}\)

28 tháng 3 2020

Tự trả lời nha

2 tháng 6 2018

a) \(A=98+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}\)(có 98 phân số nên ta cộng 1 vào mỗi phân số)

\(A=\left(\frac{1}{2}+1\right)+\left(\frac{1}{3}+1\right)+...+\left(\frac{1}{99}+1\right)\)

\(A=\frac{3}{2}+\frac{4}{3}+...+\frac{100}{99}\)

Và \(B=\frac{3}{2}+\frac{4}{3}+...+\frac{100}{99}\)

\(\Rightarrow\frac{A}{B}=\frac{\frac{3}{2}+\frac{4}{3}+...+\frac{100}{99}}{\frac{3}{2}+\frac{4}{3}+...+\frac{100}{99}}=1\)

b) \(A=2018+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2019}\)(có 2018 phân số nên ta cộng 1 vào mỗi phân số)

\(A=\left(\frac{1}{2}+1\right)+\left(\frac{1}{3}+1\right)+...+\left(\frac{1}{2019}+1\right)\)

\(A=\frac{3}{2}+\frac{4}{3}+...+\frac{2020}{2019}\)

Và \(B=\frac{3}{2}+\frac{4}{3}+...+\frac{2020}{2019}\)

\(\Rightarrow\frac{A}{B}=\frac{\frac{3}{2}+\frac{4}{3}+...+\frac{2020}{2019}}{\frac{3}{2}+\frac{4}{3}+...+\frac{2020}{2019}}=1\)

c) \(A=\frac{99}{1}+\frac{98}{2}+...+\frac{1}{99}\)

\(A=99+\frac{98}{2}+...+\frac{1}{99}\)(có 98 phân số nên ta cộng 1 vào từng phân số)

\(A=\left(\frac{98}{2}+1\right)+\left(\frac{97}{3}+1\right)+...+\left(\frac{1}{99}+1\right)+1\)

\(A=\frac{100}{2}+\frac{100}{3}+...+\frac{100}{99}+1\)

\(A=100\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}\right)\)

Và \(B=\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}\)

\(\Rightarrow\frac{A}{B}=\frac{100\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}}=100\)

2 tháng 6 2018

a)\(B=\frac{3}{2}+\frac{4}{3}+\frac{5}{4}+...+\frac{100}{99}\)

\(B=\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{3}\right)+\left(1+\frac{1}{4}\right)+...+\left(1+\frac{1}{99}\right)\)

\(\Rightarrow B=\left(1+1+1+...+1\right)+\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}\right)\)

\(\Rightarrow B=98+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}\)

\(\Rightarrow A:B=\frac{A}{B}=\frac{98+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}}{98+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}}=1.\)

Vậy \(A:B=1.\)

b)\(B=\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{3}\right)+\left(1+\frac{1}{4}\right)+...+\left(1+\frac{1}{2019}\right)\)

\(\Rightarrow B=\left(1+1+1+...+1\right)+\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2019}\right)\)

\(\Rightarrow B=2018+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2019}\)

\(\Rightarrow A:B=\frac{A}{B}=\frac{2018+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2019}}{2018+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2019}}=1.\)

Vậy \(A:B=1.\)

c)\(A=\left(1+1+...+1\right)+\frac{98}{2}+\frac{97}{3}+...+\frac{2}{98}+\frac{1}{99}\)

\(A=\left(1+\frac{98}{2}\right)+\left(1+\frac{97}{3}\right)+...+\left(1+\frac{2}{98}\right)+\left(1+\frac{1}{99}\right)\)

\(A=\frac{100}{2}+\frac{100}{3}+...+\frac{100}{98}+\frac{100}{99}\)

\(A=100\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{98}+\frac{1}{99}\right)\)

\(\Rightarrow A:B=\frac{A}{B}=\frac{100\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{98}+\frac{1}{99}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{98}+\frac{1}{99}}=1.\)

Vậy \(A:B=1.\)

13 tháng 9 2017

a)1/3+1/4+2/3+3/4

=(1/3+2/3)+(1/4+3/4)

=1+1

=2.

b)1/2+1/3-1/5+1/6

=(1/2+1/3+1/6)-1/5

=1-1/5

=4/5

c)2/3x4/5+1/3x4/5

=4/5x(2/3+1/3)

=4/5x1

=4/5

d)2/3x4/5-1/3x4/5

=4/5x(2/3-1/3)

=4/5x1/3

=4/15

13 tháng 9 2017

cccccccccllllllllllllllllll