K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 3 2020

a. \(3x^2+2-1=0\)

\(\text{⇔}3x^2+1=0\)

\(\text{⇔}3x^2=-1\)

\(\text{⇔}x^2=\frac{-1}{3}\) (Vô lí)

Vậy phương trình trên vô nghiệm.

b. \(x^2-3x+2=0\)

\(\text{⇔}x^2-x-2x+2=0\)

\(\text{⇔}x\left(x-1\right)-2\left(x-1\right)=0\)

\(\text{⇔}\left(x-1\right)\left(x-2\right)=0\)

\(\text{⇔}\left[{}\begin{matrix}x-1=0\\x-2=0\end{matrix}\right.\text{⇔}\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

Vậy phương trình có tập nghiệm \(S=\left\{1;2\right\}\).

c. \(x^2-4x+3=0\)

\(\text{⇔}x^2-x-3x+3=0\)

\(\text{⇔}x\left(x-1\right)-3\left(x-1\right)=0\)

\(\text{⇔}\left(x-1\right)\left(x-3\right)=0\)

\(\text{⇔}\left[{}\begin{matrix}x-1=0\\x-3=0\end{matrix}\right.\text{⇔}\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)

Vậy phương trình có tập nghiệm \(S=\left\{1;3\right\}\).

d. \(x^2+6x-16=0\)

\(\text{⇔}x^2-2x+8x-16=0\)

\(\text{⇔}x\left(x-2\right)+8\left(x-2\right)=0\)

\(\text{⇔}\left(x-2\right)\left(x+8\right)=0\)

\(\text{⇔}\left[{}\begin{matrix}x-2=0\\x+8=0\end{matrix}\right.\text{⇔}\left[{}\begin{matrix}x=2\\x=-8\end{matrix}\right.\)

Vậy phương trình có tập nghiệm \(S=\left\{2;-8\right\}\).

Chúc bạn học tốt@@

2 tháng 5 2019

f, 3x2+4x-4=0

\(\Leftrightarrow\)3x2+6x-2x-4=0

\(\Leftrightarrow\)3x(x+2)-2(x+2)=0

\(\Leftrightarrow\)(x+2)(3x-2)=0

\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\3x-2=0\end{matrix}\right.\)

\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=-2\\x=\frac{2}{3}\end{matrix}\right.\left(tm\right)\)

Vậy pt có tập nghiệm S = \(\left\{-2;\frac{2}{3}\right\}\)

NV
10 tháng 2 2020

\(\Leftrightarrow x^3+x^2-2x+5x^2+5x-10=0\)

\(\Leftrightarrow x\left(x^2+x-2\right)+5\left(x^2+x-2\right)=0\)

\(\Leftrightarrow\left(x+5\right)\left(x^2+x-2\right)=0\)

\(\Leftrightarrow\left(x+5\right)\left(x+2\right)\left(x-1\right)=0\)

b/ \(\Leftrightarrow x^3+5x^2+6x-x^2-5x-6=0\)

\(\Leftrightarrow x\left(x^2+5x+6\right)-\left(x^2+5x+6\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2+5x+6\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x+3\right)=0\)

10 tháng 2 2020

\(x^3+6x^2+3x-10=0\)

\(\Leftrightarrow x^3-x^2+7x^2-7x+10x-10=0\)

\(\Leftrightarrow x^2\left(x-1\right)+7x\left(x-1\right)+10\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2+7x+10\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2+2x+5x+10\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left[x\left(x+2\right)+5\left(x+2\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+2=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\\x=-5\end{matrix}\right.\)

Vậy \(S=\left\{1;-2;-5\right\}\)

\(x^3+4x^2+x-6=0\)

\(\Leftrightarrow x^3-x^2+5x^2-5x+6x-6=0\)

\(\Leftrightarrow x^2\left(x-1\right)+5x\left(x-1\right)+6\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2+5x+6\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2+2x+3x+6\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left[x\left(x+2\right)+3\left(x+2\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+2=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\\x=-3\end{matrix}\right.\)

Vậy \(S=\left\{1;-2;-3\right\}\)

29 tháng 3 2020

1. D, 2. D, 3.C, 4.D, 5. D, 6.B

8 tháng 2 2020

Bài 2 :

a, Ta có : \(\left(x+4\right)\left(x-1\right)=0\)

=> \(\left[{}\begin{matrix}x+4=0\\x-1=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=-4\\x=1\end{matrix}\right.\)

b, Ta có : \(\left(3x-2\right)\left(4x-7\right)=0\)

=> \(\left[{}\begin{matrix}3x-2=0\\4x-7=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}3x=2\\4x=7\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=\frac{2}{3}\\x=\frac{7}{4}\end{matrix}\right.\)

c, Ta có : \(\left(x+5\right)\left(x^2+1\right)=0\)

=> \(\left[{}\begin{matrix}x+5=0\\x^2+1=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=-5\\x^2+1=0\left(VL\right)\end{matrix}\right.\)

d, Ta có : \(x\left(x-1\right)\left(x^2+4\right)=0\)

=> \(\left[{}\begin{matrix}x=0\\x-1=0\\x^2+4=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=0\\x=1\\x^2+4=0\left(VL\right)\end{matrix}\right.\)

e, Ta có : \(\left(3x+2\right)\left(x+\frac{1}{2}\right)=0\)

=> \(\left[{}\begin{matrix}3x+2=0\\x+\frac{1}{2}=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=-\frac{2}{3}\\x=-\frac{1}{2}\end{matrix}\right.\)

f, Ta có : \(\left(x+2\right)\left(x+3\right)\left(x^2+7\right)=0\)

=> \(\left[{}\begin{matrix}x+2=0\\x-3=0\\x^2+7=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=-2\\x=3\\x^2+7=0\left(VL\right)\end{matrix}\right.\)

8 tháng 2 2020

Bài 1 :

a, Ta có : \(1-\frac{x+3}{4}-\frac{x-2}{6}=0\)

=> \(\frac{12}{12}-\frac{3\left(x+3\right)}{12}-\frac{2\left(x-2\right)}{12}=0\)

=> \(12-3\left(x+3\right)-2\left(x-2\right)=0\)

=> \(12-3x-9-2x+4=0\)

=> \(-5x=-7\)

=> \(x=\frac{7}{5}\)

9 tháng 6 2017

a)

\(3x^2+2x-1=0\)

\(\Leftrightarrow3x^2-x+3x-1=0\)

\(\Leftrightarrow x\left(3x-1\right)+\left(3x-1\right)=0\)

\(\Leftrightarrow\left(3x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-1=0\\x+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=-1\end{matrix}\right.\)

b)

\(x^2-5x+6=0\)

\(\Leftrightarrow x^2-3x-2x+6=0\)

\(\Leftrightarrow x\left(x-3\right)-2\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-3=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)

9 tháng 6 2017

a, \(3x^2+2x-1=0\)

\(\Rightarrow3x^2-x+3x-1=0\)

\(\Rightarrow\left(3x^2-x\right)+\left(3x-1\right)=0\)

\(\Rightarrow x.\left(3x-1\right)+\left(3x-1\right)=0\)

\(\Rightarrow\left(3x-1\right).\left(x+1\right)=0\)

\(\Rightarrow\left\{{}\begin{matrix}3x-1=0\\x+1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}3x=1\\x=-1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{3}\\x=-1\end{matrix}\right.\)

Vậy......

b, \(x^2-5x+6=0\)

\(\Rightarrow x^2-3x-2x+6=0\)

\(\Rightarrow\left(x^2-3x\right)-\left(2x-6\right)=0\)

\(\Rightarrow x.\left(x-3\right)-2.\left(x-3\right)=0\)

\(\Rightarrow\left(x-3\right).\left(x-2\right)=0\)

\(\Rightarrow\left\{{}\begin{matrix}x-3=0\\x-2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=3\\x=2\end{matrix}\right.\)

Vậy......

Chúc bạn học tốt!!!

10 tháng 3 2020
https://i.imgur.com/YWtqvwj.jpg
18 tháng 5 2017

giải đc sao pn dễ mk

19 tháng 5 2017

chẳng ai giải, thôi mình giải vậy!

a) Đặt \(y=x^2+4x+8\),phương trình có dạng:

\(t^2+3x\cdot t+2x^2=0\)

\(\Leftrightarrow t^2+xt+2xt+2x^2=0\)

\(\Leftrightarrow t\left(t+x\right)+2x\left(t+x\right)=0\)

\(\Leftrightarrow\left(2x+t\right)\left(t+x\right)=0\)

\(\Leftrightarrow\left(2x+x^2+4x+8\right)\left(x^2+4x+8+x\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-4\end{cases}}\)vậy tập nghiệm của phương trình là:S={-2;-4}

b) nhân 2 vế của phương trình với 12 ta được:

\(\left(6x+7\right)^2\left(6x+8\right)\left(6x+6\right)=72\)

Đặt y=6x+7, ta được:\(y^2\left(y+1\right)\left(y-1\right)=72\)

giải tiếp ra ta sẽ được S={-2/3;-5/3}

c) \(\left(x-2\right)^4+\left(x-6\right)^4=82\)

S={3;5}

d)s={1}

e) S={1;-2;-1/2}

f) phương trình vô nghiệm