Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1,
a, ( 3x - 1 )3 - 4 = 60
=> ( 3x - 1 )3 = 64
=> ( 3x - 1 )3 = 43
=> 3x - 1 = 4
=> 3x = 5
=> x = \(\frac{5}{3}\)
b, ( x - 10 )5 = ( x - 10 )5
=> x \(\in\)N* , \(x\ge10\)
\(A=1+6+6^2+...+6^{100}\)
\(6A=6+6^2+6^3+...+6^{101}\)
\(6A-A=\left(6+6^2+...+6^{101}\right)-\left(1+6+...+6^{100}\right)\)
\(5A=6^{101}-1\)
\(A=\frac{6^{101}-1}{5}\)
Hoàn toàn tương tự với các câu b) c)
\(A=1+6+6^2+6^3+...+6^{100}\)
\(6A=6+6^2+6^3+6^4+...+6^{101}\)
\(6A-A=\left(6+6^2+6^3+6^4+...+6^{101}\right)-\left(1+6+6^2+...+6^{100}\right)\)
\(5A=6^{101}-1\)
\(A=\frac{6^{101}-1}{5}\)
Cho A = 1 + 3 + 3^2 + 3^3 + 3^4 + 3^5 + 3^6 + 3^250
a)Tính 3A
3A = 3 + 3^2 + 3^3 + 3^4 + 3^5 + 3^6 + 3^7 + 3^251
b) hơi khó
mình đang nghĩ ạ
a) 52 . x = 62 + 82
\(5^2\cdot x=36+64\)
\(5^2\cdot x=100\)
\(x=100\div5^2\)
\(x=100\div25\)
\(x=4\)
b) ( 22 + 42 ) . x + 24 . 5 . x = 102
\(\left(4+16\right)\cdot x+16\cdot5\cdot x=100\)
\(x\cdot\left(20+80\right)=100\)
\(x\cdot100=100\)
\(x=100\div100\)
\(x=1\)
c ) 24 . x = 26
\(x=2^6\div2^4\)
\(x=2^{6-4}\)
\(x=2^2\)
\(x=4\)
d) 33 . x + 23 . x = 102
\(x\cdot\left(23+27\right)=100\)
\(x\cdot50=100\)
\(x=100\div50\)
\(x=2\)
e) 78 . x = 710
\(x=7^{10}\div7^8\)
\(x=7^{10-8}\)
\(x=7^2\)
\(x=49\)
+) \(A=3\left(x-4\right)^4-4\ge-4\)
Min A = -4 \(\Leftrightarrow x-4=0\Leftrightarrow x=4\)
+) \(B=5+2\left(x-2019\right)^{2020}\ge5\)
Min B = 5 \(\Leftrightarrow x-2019=0\Leftrightarrow x=2019\)
+) \(C=5+2018\left(2020-x\right)^2\)
Min C = 5 \(\Leftrightarrow2020-x=0\Leftrightarrow x=2020\)
+) \(D=\left(x-1\right)^{2020}+\left(y+x\right)-1\ge-1\)
Min D = -1 \(\Leftrightarrow\hept{\begin{cases}x-1=0\\y+x=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=-x\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\y=-1\end{cases}}}\)
+) \(E=2\left(x-1\right)^2+3\left(2x-y\right)^4-2\ge-2\)
Min E = -2 \(\Leftrightarrow\hept{\begin{cases}x-1=0\\2x-y=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\2x=y\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\y=2\end{cases}}}\)