Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P = \(-x^2+4x-5=-\left(x^2-4x+5\right)\)
\(=-\left(x^2-4x+4+1\right)=-\left(x-2\right)^2-1\)
Vì \(-\left(x-2\right)^2\le0\)với mọi x \(\Rightarrow\)GTN của P là -1 đạt được khi x = 2
Q = \(-4x^2+12x-12=-\left(4x^2-12x+12\right)\)
\(=-\left(4x^2-12x+9+3\right)=-\left(2x-3\right)^2-3\)
Vì \(-\left(2x-3\right)^2\le0\)với mọi x \(\Rightarrow\)GTNN của Q là -3 đạt được khi x = \(\frac{3}{2}\)
P=-x2+4-5 =-x2-1
ta có -x 2 < hoặc bằng 0 với mọi x
=> P=-x2-1<hoặc bằng -1
=>P luôn luôn âm
B = x2 + 4x + 6
= (x2 + 4x + 4) + 2
= (x + 2)2 + 2 > 0
D = x2 + x + 1
= (x2 + 2x\(\frac{1}{2}\)+\(\frac{1}{4}\)) + \(\frac{3}{4}\)
= (x + \(\frac{1}{2}\))2 + \(\frac{3}{4}\)> 0
F = 2x2 + 4x + 3
= (2x2 + 4x + 2) + 1
= (\(\sqrt{2x}+\sqrt{2}\))2 + 1 > 0
H = 4x2 + 4x + 2
= (4x2 + 4x + 1) + 1
= (2x + 1)2 + 1 > 0
K = 4x2 + 3x + 2
= (4x2 + 2.2.\(\frac{3}{4}\)x + \(\frac{9}{16}\)) + \(\frac{23}{16}\)
= (2x + \(\frac{3}{4}\))2 + \(\frac{23}{16}\)> 0
L = 2x2 + 3x + 4
= (x2 + 2x\(\frac{3}{2}\) + \(\frac{9}{4}\)) + x2 + \(\frac{7}{4}\)
= (x + \(\frac{3}{2}\))2 + x2 + \(\frac{7}{4}\)> 0
Vậy các biểu thức trên luôn dương với mọi x
\(B=x^2+2x+1+5=\left(x+1\right)^2+5>0\)
\(H=4x^2+4x+1+1=\left(2x+1\right)^2+1>0\)
Các đa thức còn lại đều có delta < 0 và hệ số a >0 nên luôn dương với mọi x
Ta có:
\(2x-x^{^2}-2\)
\(=-\left(x^{^2}-2x+2\right)\)
\(=-\left(x^{^2}-2x+1\right)\)
\(=-\left(x^{^2}-2x+1\right)-1\)
\(=-\left(x-1\right)^2-1\)
Do \(-\left(x-1\right)^2\le0\)nên \(-\left(x-1\right)^2-1=2x-x^{^2}-2< 0\)hay biểu thức đề cho luôn âm (đpcm)
\(B=-x^2-4x-7\)
\(-B=x^2+4x+7\)
\(-B=\left(x^2+4x+4\right)+3\)
\(-B=\left(x+2\right)^2+3\)
Mà \(\left(x+2\right)^2\ge0\forall x\)
\(\Rightarrow-B\ge3\)
\(\Leftrightarrow B\le3< 0\)
Vậy ...
Bài 1:
\(A=x^2+2x+2\)
\(A=x^2+2.x.1+1+1\)
\(A=\left(x+1\right)^2+1\)
Vì \(\left(x+1\right)^2\ge0\) với mọi x
\(1>0\)
\(\Rightarrow\left(x+1\right)^2+1>0\) với mọi x
Vậy biểu thức trên có giá trị dương với mọi giá trị của x
Bài 2:
\(A=-x^2-2x-2\)
\(A=-\left(x^2+2x+2\right)\)
\(A=-\left(x^2+2x+1+1\right)\)
\(A=-\left(x^2+2x+1\right)-1\)
\(A=-\left(x+1\right)^2-1\)
Vì \(-\left(x+1\right)^2\le0\) với mọi x
\(-1< 0\)
\(\Rightarrow-\left(x+1\right)^2-1< 0\) với mọi x
Vậy biểu thức A có giá trị âm với mọi giá trị của x
\(B=-x^2-4x-7\)
\(B=-\left(x^2+4x+7\right)\)
\(B=-\left(x^2+2.x.2+4+3\right)\)
\(B=-\left(x^2+2.x.2+4\right)-3\)
\(B=-\left(x+2\right)^2-3\)
Vì \(-\left(x+2\right)^2\le0\) với mọi x
\(-3< 0\)
\(\Rightarrow-\left(x+2\right)^2-3< 0\) với mọi x
Vậy biểu thức B có giá trị âm với mọi giá trị của x
a)2x(2x+7)=4(2x+7)
2x(2x+7)-4(2x+7)=0
(2x+7)(2x-4)=0
\(\Rightarrow\orbr{\begin{cases}2x+7=0\\2x-4=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=-\frac{7}{2}\\x=2\end{cases}}\)
b)Ta có:x3-4x2+ax=x3-3x2-x2+ax
=x2(x-3)-x(x-a)
Để x3-4x2+ax chia hết cho x-3 thì a=3
\(B=-2x^2+4x-5\)
\(=-2\left(x^2-2x+\frac{5}{2}\right)\)
\(=-2\left(x^2-2x+1+\frac{3}{2}\right)\)
\(=-2\left[\left(x-1\right)^2+\frac{3}{2}\right]\)
\(=-2\left[\left(x-1\right)^2\right]-3\le3< 0\forall x\)
\(B=-2x^2+4x-5\)
\(B=-2\left(x^2-2x+\frac{5}{2}\right)\)
\(B=-2\left(x^2-2x+1+\frac{3}{2}\right)\)
\(B=-2\left[\left(x-1\right)^2+\frac{3}{2}\right]\)
\(B=-2\left(x-1\right)^2-3\)
Mà \(\hept{\begin{cases}-2\left(x-1\right)^2\le0\forall x\\-3< 0\end{cases}\Rightarrow B< 0\forall x}\)