Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/. x3 - 9x2 +27x - 19 = 0
<=> (x3 - 3.x2 .3 + 3.32 .x - 33) + 8 = 0
<=> (x - 3)3 + 8 = 0
<=> (x - 3 + 2) [(x - 3)2 - 2(x-3) +4] = 0
<=> (x -1)(x2 - 6x+ 9 -2x +6 +4) =0
<=> (x - 1)(x2 - 8x + 19) = 0
<=> x - 1 = 0 => x = 1
Vậy S = {1}
Xem lại đề câu b nha bạn?
c/. x3 + 1 -7x -7 =0
<=> (x3 + 1) -7(x+1)=0
<=> (x+1)(x2-x+1) -7(x+1)=0
<=> (x+1)(x2-x+1-7)=0
<=> x + 1 = 0 hay x2 -x - 6 = 0
<=> x = -1 hay (x2 - 3x) + (2x - 6) = 0
<=> x(x - 3) +2(x-3) = 0
<=> (x - 3)(x+2) = 0
<=> x = -1 hay x = 3 hay x = -2
Vậy S = {-1;3;-2}
X3 - X2-8X2+8X+19X-19=0
<=>X2(X-1)-8X(X-1)+19(X-1)=0
<=>(X-1)(X2-8X+19)=0
vi X2-8X+19=(X-4)2+3>3
b. x2-7x+6=0
=>x2-x-6x+6=0
=> x(x-1)-6(x-1)=0
=>(x-6)(x-1)=0
=>x-6=0 hoặc x-1=0
=>x=6 hoặc x=1
\(3x^3+2x^2+2x+3=0\)
\(\Leftrightarrow3\left(x^3+1\right)+2x\left(x+1\right)=0\)
\(\Leftrightarrow3\left(x+1\right)\left(x^2-x+1\right)+2x\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(3x^2-x+3\right)=0\)
Mà \(3x^2-x+3=3\left[\left(x-\frac{1}{6}\right)^2+\frac{35}{36}\right]>0\forall x\)
Do đó: \(x+1=0\Leftrightarrow x=-1\)
Tập nghiệm: \(S=\left\{-1\right\}\)
\(\left(x-1\right)^3+\left(2x+3\right)^3=27x^3+8\)
\(\Leftrightarrow\left[\left(x-1\right)+\left(2x+3\right)\right]\left[\left(x-1\right)^2-\left(x-1\right)\left(2x+3\right)+\left(2x+3\right)^2\right]=27x^3+8\)
\(\Leftrightarrow\left(3x+2\right)\left(x^2-2x+1-2x^2-3x+2x+3+4x^2+12x+9\right)=27x^3+8\)
\(\Leftrightarrow\left(3x+2\right)\left(3x^2+9x+13\right)=\left(3x+2\right)\left(9x^2-6x+4\right)\)
\(\Leftrightarrow\left(3x+2\right)\left(6x^2-15x-9\right)=0\)(Chuyển vế)
\(\Leftrightarrow3\left(3x+2\right)\left(2x^2-5x-3\right)=0\)
\(\Leftrightarrow3\left(3x+2\right)\left(x-3\right)\left(2x+1\right)=0\)
Tập nghiệm: \(S=\left\{-\frac{2}{3};3;-\frac{1}{2}\right\}\)
\(3x^2-27x=0\)
\(3x\left(x-9\right)=0\)
\(\left[\begin{array}{nghiempt}x=0\\x-9=0\end{array}\right.\)
\(\left[\begin{array}{nghiempt}x=0\\x=9\end{array}\right.\)
\(\frac{2}{3}x\left(x^2-4\right)=0\)
\(\frac{2}{3}x\left(x-2\right)\left(x+2\right)=0\)
\(\left[\begin{array}{nghiempt}x=0\\x-2=0\\x+2=0\end{array}\right.\)
\(\left[\begin{array}{nghiempt}x=0\\x=2\\x=-2\end{array}\right.\)
a)\(3x^2-27x=0\)
\(3x\left(x-9\right)=0\)
\(\Rightarrow\left[\begin{array}{nghiempt}3x=0\\x-9=0\end{array}\right.\Rightarrow\left[\begin{array}{nghiempt}x=0\\x=9\end{array}\right.\)
b) \(\frac{2}{3}x\left(x^2-4\right)=0\)
\(\frac{2}{3}x\left(x+2\right)\left(x-2\right)=0\)
\(\Rightarrow\left[\begin{array}{nghiempt}\frac{2}{3}x=0\\x+2=0\\x-2=0\end{array}\right.\Rightarrow\left[\begin{array}{nghiempt}x=0\\x=-2\\x=2\end{array}\right.\)
a, 3x^2-27x=0
3x(x-9)=0
3x=0=>x=0
x-9=0=>x=9
b,2/3x(x^2-4)=0
2/3x=0=>x=0
x^2-4=0=>x=2
Lời giải:
f)
$2x^3+3x^2+3x+1=2x^3+x^2+2x^2+x+2x+1$
$=x^2(2x+1)+x(2x+1)+(2x+1)=(2x+1)(x^2+x+1)$
g)
$3x^3-2x^2+5x+2=3x^3+x^2-3x^2-x+6x+2$
$=x^2(3x+1)-x(3x+1)+2(3x+1)=(3x+1)(x^2-x+2)$
h)
$27x^3-27x^2+18x-4=27x^3-9x^2-18x^2+6x+12x-4$
$=9x^2(3x-1)-6x(3x-1)+4(3x-1)=(3x-1)(9x^2-6x+4)$
3x3 - 27x = 0
=> 3x.(x2 -9) = 0
=> 3x = 0 hoặc x2 - 9 = 0
TH1: 3x = 0
=> x = 0
TH2: x2 - 9 = 0
=> x2 = 9
=> x = 3 hoặc x = -3
Vậy, x \(\in\){ 0; 3; -3}
\(3x^3-27x=0\)
\(3x.x^2-27x=0\)
\(3x.x^2=27x\)
\(x^2=27x:3x\)
\(x^2=9\)
\(x=3\).Vậy x = 3
Em học lớp 7 lận
em nói thật đấy