Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{x}=x\)
\(\Rightarrow x-\sqrt{x}=0\)
\(\Rightarrow\sqrt{x}\left(\sqrt{x}-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{x}=0\\\sqrt{x}-1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\end{matrix}\right.\)
\(x-2\sqrt{x}=0\)
\(\Rightarrow\sqrt{x}\left(\sqrt{x}-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{x}=0\\\sqrt{x}-2=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\\left[{}\begin{matrix}x=\sqrt{2}\\x=-\sqrt{2}\end{matrix}\right.\end{matrix}\right.\)
\(\sqrt{x+1}=1-x\)
\(\Rightarrow\left|x+1\right|=1-2x+x^2\)
Với \(x\ge-1\) ta có:
\(x+1=1-2x+x^2\)
\(\Rightarrow x+1-1+2x-x^2=0\)
\(\Rightarrow3x-x^2=0\)
\(\Rightarrow x\left(3-x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\3-x=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)
Với \(x< -1\) ta có:
\(-x-1=1-2x+x^2\)
\(\Rightarrow1-2x+x^2+x-1=0\)
\(\Rightarrow3x+x^2=0\)
\(\Rightarrow x\left(3+x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\3+x=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=-3\end{matrix}\right.\)
Còn pt vô tỉ tui chưa học
\(a,\sqrt{x}=7\left(ĐKXĐ:x\ge0\right)\)
\(\Leftrightarrow\) \(\sqrt{x}=\sqrt{49}\)
\(\Leftrightarrow\) \(x=49\)
Kết hợp với ĐK x >= 0 \(\Rightarrow\) x=49 (t/m )
vậy x=49
\(\)
\(b,\sqrt{x+1}=11\left(ĐKXĐ:x\ge-1\right)\)
\(\Leftrightarrow\sqrt{x+1}\) = \(\sqrt{121}\)
\(\Leftrightarrow\) \(x+1=121\)
\(\Leftrightarrow\) \(x=120\) kết hợp với ĐK x >= -1 \(\Rightarrow\) x=120 ( t/m )
Vậy x=120
Tìm x biết :
\(3x\sqrt{x+1}=40\)
\(\sqrt{x+1}+2=0\)
\(\sqrt{\left(x+1\right)^2}=3\)
\(\sqrt{x-3}=4\)
b: =>căn x+1=-2(loại)
c: =>|x+1|=3
=>x+1=3 hoặc x+1=-3
=>x=-4 hoặc x=2
d: =>x-3=16
=>x=19
a) 2|2/3 - x| = 1/2
|2/3 - x| = 1/4
|2/3 - x| = 1/4 hoặc |2/3 - x| = -1/4
Xét 2 TH...
a)
\(\sqrt{x}=7\Rightarrow x=49\)
b) \(\sqrt{2}-3x=4\Rightarrow3x=\sqrt{2}-4\)
\(x=\frac{\sqrt{2-4}}{3}\)
c)suy ra \(\frac{x+1}{2}=\frac{3}{2}\)suy ra x+1=3 suy ra x=2
\(\sqrt{x^4+3x^2}+\sqrt{x^4+6x^2}\)
\(=\sqrt{x^4+\dfrac{3}{2}x^2+\dfrac{3}{2}x^2+\dfrac{9}{4}-\dfrac{9}{4}}+\sqrt{x^4+3x^2+3x^2+9-9}\)
\(=\sqrt{\left(x^2+\dfrac{3}{2}\right)^2-\left(\dfrac{3}{2}\right)^2}+\sqrt{\left(x^2+3\right)^2-3^2}\)
\(=\sqrt{\left(x^2+\dfrac{3}{2}-\dfrac{3}{2}\right)\left(x^2+\dfrac{3}{2}+\dfrac{3}{2}\right)}+\sqrt{\left(x^2+3-3\right)\left(x^2+3+3\right)}\)
\(=\sqrt{x^2}.\sqrt{x^2+3}+\sqrt{x^2}.\sqrt{x^2+6}\)
\(=x\left(\sqrt{x^2+3}+\sqrt{x^2+6}\right)\)
\(\sqrt{x^4+3x^2}+\sqrt{x^4+6x^2}\)
\(=\sqrt{x^4+3x^2+\dfrac{9}{4}-\dfrac{9}{4}}+\sqrt{x^4+6x^2+9-9}\)
\(=\sqrt{\left(x^2+\dfrac{3}{2}\right)^2-\dfrac{9}{4}}+\sqrt{\left(x^2+3\right)^2-9}\)
\(=\left|x^2+\dfrac{3}{2}\right|-\dfrac{3}{2}+\left|x^2+3\right|-3\)
Vì: \(\left\{{}\begin{matrix}x^2+\dfrac{3}{2}>0\\x^2+3>0\end{matrix}\right.\)
Nên: \(pt\Leftrightarrow x^2+\dfrac{3}{2}-\dfrac{3}{2}+x^2+3-3\)
\(=2x^2\)
Đừng giết em :333333333
\(\left[{}\begin{matrix}3x+\sqrt{2}=4\\3x+\sqrt{2}=-4\end{matrix}\right.\)
<=>\(\left[{}\begin{matrix}3x=4-\sqrt{2}\\3x=-4-\sqrt{2}\end{matrix}\right.\)
<=>\(\left[{}\begin{matrix}x=\dfrac{4-\sqrt{2}}{3}\\x=\dfrac{-4-\sqrt{2}}{3}\end{matrix}\right.\)