Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3x=5y\Rightarrow\dfrac{x}{5}=\dfrac{y}{3}\Rightarrow\dfrac{x}{15}=\dfrac{y}{9}\)
\(9z=7y\Rightarrow\dfrac{y}{9}=\dfrac{z}{7}\)
\(\Rightarrow\dfrac{x}{15}=\dfrac{y}{9}=\dfrac{z}{7}\)
Áp dụng TCDTSBN ta có:
\(\dfrac{x}{15}=\dfrac{y}{9}=\dfrac{z}{7}=\dfrac{3x-2y-4z}{45-18-28}=\dfrac{10}{-1}=-10\)
\(\dfrac{x}{15}=-10\Rightarrow x=-150\\ \dfrac{y}{9}=-10\Rightarrow y=-90\\ \dfrac{z}{7}=-10\Rightarrow z=-70\)
a, \(3x=5y=7z=>\dfrac{3x}{105}=\dfrac{5y}{105}=\dfrac{7z}{105}=>\dfrac{x}{35}=\dfrac{y}{21}=\dfrac{z}{15}\)
áp dụng tính chất dãy tỉ số = nhau
\(=>\dfrac{x}{35}=\dfrac{y}{21}=\dfrac{z}{15}=\dfrac{x+y+z}{35+21+15}=\dfrac{10}{71}\)
\(=>\dfrac{x}{35}=\dfrac{10}{71}=>x=\dfrac{350}{71}\)
\(=>\dfrac{y}{21}=\dfrac{10}{71}=>y=\dfrac{210}{71}\)
\(=>\dfrac{z}{15}=\dfrac{10}{71}=>z=\dfrac{150}{71}\)
b, \(\)\(6x=5y=>\dfrac{x}{5}=\dfrac{y}{6}=>\dfrac{x}{20}=\dfrac{y}{24}\)
có \(7y=8z=>\dfrac{y}{8}=\dfrac{z}{7}=>\dfrac{y}{24}=\dfrac{z}{21}\)
\(=>\dfrac{x}{20}=\dfrac{y}{24}=\dfrac{z}{21}=>\dfrac{3x}{60}=\dfrac{2y}{48}=\dfrac{4z}{84}\)
áp dụng t/c dãy tỉ số = nhau
\(=>\dfrac{3x}{60}=\dfrac{2y}{48}=\dfrac{4z}{84}=\dfrac{3x+2y+4z}{60+48+84}=\dfrac{12}{192}=\dfrac{1}{16}\)
\(=>\dfrac{3x}{60}=\dfrac{1}{16}=>x=1,25\)
\(=>\dfrac{2y}{48}=\dfrac{1}{16}=>y=1,5\)
\(=>\dfrac{4z}{84}=\dfrac{1}{16}=>z=1,3125\)
c, \(x:y:z=1:2:3=>\dfrac{x}{1}=\dfrac{y}{2}=\dfrac{z}{3}\)
\(=>x=\dfrac{y}{2},z=\dfrac{3y}{2}\)
thay x,z vào \(x^3+y^3+z^3=36=>\left(\dfrac{y}{2}\right)^3+y^3+\left(\dfrac{3y}{2}\right)^3=36\)
\(=>y=2\)
\(=>x=\dfrac{y}{2}=\dfrac{2}{2}=1,z=\dfrac{3y}{2}=\dfrac{3.2}{2}=3\)
d, \(\dfrac{x}{2}=\dfrac{y}{3}=>x=\dfrac{2y}{3}\)
thay x vào \(3x^3+y^3=51=>3.\left(\dfrac{2y}{3}\right)^3+y^3=51=>y=3\)
\(=>x=\dfrac{2.3}{3}=2\)
c, từ đoạn này á
\(\left(\dfrac{y}{2}\right)^3+y^3+\left(\dfrac{3y}{2}\right)^3=36\)
\(< =>\dfrac{y^3}{8}+\dfrac{8y^3}{8}+\dfrac{27y^3}{8}=36\)
\(=>\dfrac{36y^3}{8}=36=>36y^3=8.36=>y^3=8=>y=2\)
\(3x=y\)=> \(x=\frac{y}{3}\)=> \(\frac{x}{4}=\frac{y}{12}\)
\(5y=4z\)=> \(\frac{y}{4}=\frac{z}{5}\)=> \(\frac{y}{12}=\frac{z}{15}\)
=> \(\frac{x}{4}=\frac{y}{12}=\frac{z}{15}\)
=> \(\frac{6x}{24}=\frac{7y}{84}=\frac{8z}{120}=\frac{6x+7y+8z}{24+84+120}=\frac{456}{228}=2\)
<=> \(\frac{x}{4}=\frac{y}{12}=\frac{z}{15}=2\)
=> x = 2 . 4 = 8
y = 2 . 12 = 24
z = 2 . 15 = 30
KL: ........
3x = y => \(\frac{x}{1}=\frac{y}{3}\)=> \(\frac{x}{4}=\frac{y}{12}\) ( 1 )
5y = 4z => \(\frac{y}{4}=\frac{z}{5}\)=> \(\frac{y}{12}=\frac{z}{15}\)( 2 )
Từ ( 1 ) và ( 2 ) => \(\frac{x}{4}=\frac{y}{12}=\frac{z}{15}=\frac{23x}{92}=\frac{7y}{84}=\frac{2z}{30}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{23x}{92}=\frac{7y}{84}=\frac{2z}{30}=\frac{23x-7y-2z}{92-84-30}=\frac{-44}{-22}=2\)
=> x = 8 ; y = 24 ; z = 30
Ta có:
\(3x=y\Rightarrow\frac{x}{1}=\frac{y}{3};5y=4z\Rightarrow\frac{y}{4}=\frac{z}{5}\)
\(\Rightarrow\frac{x}{4}=\frac{y}{12}=\frac{z}{15}=\frac{23x}{92}=\frac{7y}{84}=\frac{2z}{30}=\frac{23x-7y-2z}{92-84-30}\)
\(=\frac{-44}{-22}=2\)
\(\frac{x}{4}=2\Rightarrow x=8\) ; \(\frac{y}{12}=2\Rightarrow y=24\)
\(\frac{z}{15}=2\Rightarrow z=30\)
Vậy ...................................... Chúc bn hok tốt !!!
\(\hept{\begin{cases}3x=y\\5y=4z\end{cases}\Rightarrow\hept{\begin{cases}\frac{3x}{12}=\frac{y}{12}\\\frac{5y}{60}=\frac{4z}{60}\end{cases}\Rightarrow}\hept{\begin{cases}\frac{x}{4}=\frac{y}{12}\\\frac{y}{12}=\frac{z}{15}\end{cases}\Rightarrow}\frac{x}{4}=\frac{y}{12}=\frac{z}{15}=\frac{6x}{24}=\frac{7y}{84}=\frac{8z}{120}=\frac{6x+7y+8z}{24+84+120}=\frac{456}{228}=2\Rightarrow x=2.4=8}\)
Ta sẽ đưa các tích về 1 dãy tỉ số
\(3x=5y\Leftrightarrow\frac{x}{5}=\frac{y}{3}\Leftrightarrow\frac{x}{15}=\frac{y}{9},7y=9z\Leftrightarrow\frac{y}{9}=\frac{z}{7}\Rightarrow\frac{x}{15}=\frac{y}{9}=\frac{z}{7},x-y+z=117\left(gt\right)\)
Áp dụng tính chất dãy tỉ số bằng nhau cho dãy tỉ số trên ta được
\(\frac{x}{15}=\frac{y}{9}=\frac{z}{7}=\frac{x-y+z}{15-9+7}=\frac{117}{13}=9\Rightarrow x=15.9=135,y=9.9=81,z=7.9=63\)
Vậy \(x=135,y=81,z=63\)
Ta có: \(3x=5y=\frac{x}{5}=\frac{y}{3}\Rightarrow\frac{x}{15}=\frac{y}{9}\)
\(7y=9z=\frac{y}{9}=\frac{z}{7}\)
\(\Rightarrow\frac{x}{15}=\frac{y}{9}=\frac{z}{7}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{15}=\frac{y}{9}=\frac{z}{7}=\frac{x-y+z}{15-9+7}=\frac{117}{13}=9\)
\(\Rightarrow\frac{x}{15}=9\Rightarrow x=9\cdot15=135\)
\(\frac{y}{9}=9\Rightarrow y=9\cdot9=81\)
\(\frac{z}{7}=9\Rightarrow z=9\cdot7=63\)
Vậy x=135, y=81 và z=63
\(3x=5y\Rightarrow\dfrac{x}{5}=\dfrac{y}{3}\Rightarrow\dfrac{x}{15}=\dfrac{y}{9};9z=7y\Rightarrow\dfrac{z}{7}=\dfrac{y}{9}\\ \Rightarrow\dfrac{x}{15}=\dfrac{y}{9}=\dfrac{z}{7}\)
Áp dụng...
\(\dfrac{x}{15}=\dfrac{y}{9}=\dfrac{z}{7}=\dfrac{3x}{45}=\dfrac{2y}{18}=\dfrac{4z}{28}=\dfrac{3x-2y-4z}{45-18-28}=\dfrac{10}{-1}=-10\\ \Rightarrow\left\{{}\begin{matrix}x=-150\\y=-90\\z=-70\end{matrix}\right.\)
\(3x=5y\)
\(\Leftrightarrow\dfrac{x}{5}=\dfrac{y}{3}\)
hay \(\dfrac{x}{15}=\dfrac{y}{9}\left(1\right)\)
7y=9z
nên \(\dfrac{y}{9}=\dfrac{z}{7}\left(2\right)\)
Từ (1) và (2) suy ra \(\dfrac{x}{15}=\dfrac{y}{9}=\dfrac{z}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{15}=\dfrac{y}{9}=\dfrac{z}{4}=\dfrac{3x-2y-4z}{45-18-16}=\dfrac{10}{11}\)
Do đó: \(x=\dfrac{150}{11};y=\dfrac{90}{11};z=\dfrac{40}{11}\)