Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3x/2.5 + 3x/5.8 + 3x/8.11 + 3x/11.14 = 1/21
=> x . ( 3/2.5 + 3/5.8 + 3/8.11 + 3/11.14 ) = 1/21
=> x . ( 1/2.5 + 1/5.8 + 1/8.11 + 1/11.14 ) = 1/21
x . ( 1/2 - 1/5 + 1/5 - 1/8 + 1/8 - 1/11 + 1/11 - 1/14 ) = 1/21
x . ( 1/2 - 1/14 ) = 1/21
x . 3/7 = 1/21
x = 1/21 : 3/7
=> x = 1/9
\(\frac{3x}{2\cdot5}+\frac{3x}{5\cdot8}+\frac{3x}{8\cdot11}+\frac{3x}{11\cdot14}=\frac{1}{21}\)
<=> \(x\left(\frac{3}{2\cdot5}+\frac{3}{5\cdot8}+\frac{3}{8\cdot11}+\frac{3}{11\cdot14}\right)=\frac{1}{21}\)
<=> \(x\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}\right)=\frac{1}{21}\)
<=> \(x\left(\frac{1}{2}-\frac{1}{14}\right)=\frac{1}{21}\)
<=> \(x\cdot\frac{3}{7}=\frac{1}{21}\)
<=> \(x=\frac{1}{9}\)
x.\(\left(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+\frac{3}{14.17}\right)=-1\frac{3}{5}\)
x.\(\left(\frac{5-2}{2.5}+\frac{8-5}{5.8}+\frac{11-8}{8.11}+\frac{14-11}{11.14}+\frac{17-14}{14.17}\right)=\frac{-8}{5}\)
x.\(\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}\right)=\frac{-8}{5}\)
x.\(\left(\frac{1}{2}-\frac{1}{17}\right)=\frac{-8}{5}\)
x.\(\left(\frac{17}{34}-\frac{2}{34}\right)=\frac{-8}{5}\)
x.\(\frac{15}{34}=\frac{-8}{5}\)
x\(=\frac{-8}{5}:\frac{15}{34}\)
x\(=\frac{-8}{5}.\frac{34}{15}\)
x\(=\frac{-272}{75}\)
Vậy x\(=\frac{-272}{75}\)
3x/2.5 + 3x/5.8+3x/8.11+3x/11.14 = 1/21
x(1/2-1/5+1/5-1/8+1/8-1/11+1/11-1/14) = 1/21
x(1/2-1/14) = 1/21
x . 3/7 = 1/21
=> x = 1/21 : 3/7
=> x = 1/9
Hihi mình giải zầy mk hk bik đúng hay sai
mạo phép chỉnh đề:
\(\frac{3x}{2.5}+\frac{3x}{5.8}+\frac{3x}{8.11}+\frac{3x}{11.14}=\frac{1}{21}\)
<=> \(x\left(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}\right)=\frac{1}{21}\)
<=> \(x\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}\right)=\frac{1}{21}\)
<=> \(x\left(\frac{1}{2}-\frac{1}{14}\right)=\frac{1}{21}\)
<=> \(x.\frac{3}{7}=\frac{1}{21}\)
<=> \(x=\frac{1}{9}\)
Vậy...
Ta có : \(\frac{3x}{2\times5}+\frac{3x}{5\times8}+\frac{3x}{8\times11}+\frac{3x}{11\times14}=\frac{1}{21}\)
\(\Rightarrow x\times\left(\frac{3}{2\times5}+\frac{3}{5\times8}+\frac{3}{8\times11}+\frac{3}{11\times14}\right)=\frac{1}{21}\)
\(\Rightarrow x\times\left(\frac{1}{2\times5}+\frac{1}{5\times8}+\frac{1}{8\times11}+\frac{1}{11\times14}\right)=\frac{1}{21}\)
\(x\times\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}\right)=\frac{1}{21}\)
\(x\times\left(\frac{1}{2}-\frac{1}{14}\right)\) \(=\frac{1}{21}\)
\(x\times\frac{3}{7}\) \(=\frac{1}{21}\)
\(x\) \(=\frac{1}{21}\div\frac{3}{7}=\frac{1}{21}\times\frac{7}{3}\)
\(\Rightarrow x=\frac{1}{9}\)
Ta có 3x/2.5+3x/5.8+3x/8.11+3x/11.14=1/21
=>x(3/2.5+3/5.8+3/8.11+3/11.14)=1/21
=>3x(1/2.5+1/5.8+1/8.11+1/11.14)=1/21
=>3x(1/2-1/14)=1/21
=>3x.3/7=1/21
=>3x=1/21:3/7
=>3x=1
=>x=1:3=1/3
\(x\) \((\)\(\dfrac{3}{2.5}\) \(+
\) \(\dfrac{3}{5.8}\) \(+\) \(\dfrac{3}{8.11}\) \(+\) \(\dfrac{3}{11.14}\)\()\) \(=\) \(\dfrac{1}{21}\)
\(x\) \((\)\(\dfrac{1}{2}\) \(-\) \(\dfrac{1}{5}\) \(+\) \(\dfrac{1}{5}\) \(-\) \(\dfrac{1}{8}\) \(+\) \(\dfrac{1}{8}\) \(-\) \(\dfrac{1}{11}\) \(+\) \(\dfrac{1}{11}\) \(-\) \(\dfrac{1}{14}\)\()\) \(=\) \(\dfrac{1}{21}\)
\(x\) \((\)\(\dfrac{1}{2}\) \(-\) \(\dfrac{1}{14}\)\()\) \(=\) \(\dfrac{1}{21}\)
\(x\) x \(\dfrac{3}{7}\) \(=\) \(\dfrac{1}{21}\)
\(x\) \(=\) \(\dfrac{1}{21}\) \(:\) \(\dfrac{3}{7}\)
\(x\) \(=\) \(\dfrac{1}{9}\)
Đặt 1/5.8 + 1/8.11 +...+ 1 /x (x+3) = A
3A = 3/5.8 + 3/8.11 +...+ 3/x (x+3)
3A = 1/5 - 1/8 + 1/8 - 1/11 +...+ 1/x - 1/x+3
3A = 1/5 - 1/x + 3
3A = ( 3+x)-5/5x +15
A =[ ( 3+ x ) - 5 / 5x + 15 ] : 3
A = x + ( - 2 ) / 5x + 15
Ta có :
A + 27/480
= x + ( - 2 ) / 5x + 15
=> x + ( - 2 ) = 27
=> 5x + 15 = 480
* Làm nốt *
#Louis
\(\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+...+\frac{1}{x\left(x+3\right)}=\frac{27}{480}\)
\(=\frac{1}{3}\left(\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+...+\frac{3}{x\left(x+3\right)}\right)=\frac{27}{480}\)
\(=\frac{1}{3}\left(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{x}-\frac{1}{x+3}\right)=\frac{27}{480}\)
\(=\frac{1}{3}\left(\frac{1}{5}-\frac{1}{x+3}\right)=\frac{27}{480}\)
\(=\frac{1}{5}-\frac{1}{x+3}=\frac{27}{480}.3\)
\(=\frac{1}{5}-\frac{1}{x+3}=\frac{81}{480}\)
\(\Rightarrow\frac{1}{x+3}=\frac{1}{5}-\frac{81}{480}=\frac{15}{480}=\frac{1}{32}\)
\(\Rightarrow x+3=32\)
\(\Rightarrow x=32-3=29\)
Đặt \(A=\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+...+\frac{3}{32.35}\)
\(A=\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{32}-\frac{1}{35}\)
\(A=\frac{1}{5}-\frac{1}{35}=\frac{6}{35}\)
\(\Rightarrow x+\frac{6}{35}=-\frac{2}{7}\Rightarrow x=-\frac{2}{7}-\frac{6}{35}=-\frac{16}{35}\)