K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 1 2016

Tick minh đi mình giải cho

2 tháng 1 2016

Ta có

\(3^{x-2}-3^x=216\)

<=>\(3^x.9-3^x=216\)

<=>\(3^x.8=216\)

<=>\(3^x=27\)

<=>\(x=3\)

Tick mình nha bạn. Chúc bạn một năm mới vui vẻ ,hạnh phúc, may mắn, học giỏi...

25 tháng 12 2018

3^x (1-3^3) = -234

3^x(-26) = -234

3^x = 9

=> x =2

b/2. 2^x. 3^x - 6^x = 216

2. 6^x - 6^x = 216

6^x = 216

x = 3

14 tháng 6 2016

a) Điều kiện: \(x\ne-5\)

  • Với x<-5 thì: x+3 <0; x+5<0 nên: \(\frac{x+3}{x+5}>0\)Loại.
  • Với x>=-3 thì x+3>=0; x+5 >0 nên \(\frac{x+3}{x+5}\ge0\)Loại.
  • Với -5<x<-3 thì x+3 <0; x+5>0 nên: \(\frac{x+3}{x+5}< 0\)TM đề bài.

Nghiệm của BPT là -5 <x <-3.

b) Tương tự, nghiệm của BPT là: \(\orbr{\begin{cases}x< -1\\x>3\end{cases}}\)

14 tháng 6 2016

Mà em mới lớp 7 à nên k biết nghiệm là gì hết á, chị có cách nào khác k ạ???

2 tháng 7 2016

\(\left(x-1\right)\left(x+2\right)< 0\) <=> x-1 và x+2 khác dấu

Mà x-1 < x+2 nên \(\hept{\begin{cases}x-1< 0\\x+2>0\end{cases}=>\hept{\begin{cases}x< 1\\x>-2\end{cases}=>-2< x< 1}}\)

Vậy.........

\(\left(x-2\right)\left(x+\frac{2}{3}\right)>0\) <=> x-2 và x+2/3 cùng dấu

\(\left(+\right)\hept{\begin{cases}x-2< 0\\x+\frac{2}{3}< 0\end{cases}=>\hept{\begin{cases}x< 2\\x< -\frac{2}{3}\end{cases}=>x< -\frac{2}{3}}}\)

\(\left(+\right)\hept{\begin{cases}x-2>0\\x+\frac{2}{3}>0\end{cases}=>\hept{\begin{cases}x>2\\x>-\frac{2}{3}\end{cases}=>x>2}}\)

Vậy x>2 hoặc x<-2/3

  1. x= -1
  2. x= -1 ; -3, -4.... trừ -2 
20 tháng 7 2017

a) \(\left(x+1\right)\left(x-2\right)< 0\)

\(\Leftrightarrow\hept{\begin{cases}x+1>0\\x-2< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>-1\\x< 2\end{cases}}\Leftrightarrow-1< x< 2\) (đúng)

Hoặc \(\hept{\begin{cases}x+1< 0\\x-2>0\end{cases}}\) (vô lý)

=> \(-1< x< 2\)

b) \(\left(x-2\right)\left(x+\frac{2}{3}\right)>0\)

Bất đẳng thức xảy ra khi 2 thừa số đồng dấu .

\(\left(1\right)\hept{\begin{cases}x-2>0\\x+\frac{2}{3}>0\end{cases}}\Rightarrow\hept{\begin{cases}x>2\\x>\frac{-2}{3}\end{cases}}\Rightarrow x>2\)

\(\left(2\right)\hept{\begin{cases}x-2< 0\\x+\frac{2}{3}< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< 2\\x< \frac{-2}{3}\end{cases}}\Rightarrow x< \frac{-2}{3}\)

Vậy \(\hept{\begin{cases}x>2\\x< -\frac{2}{3}\end{cases}}\) thì thõa mãn 

20 tháng 7 2017

a) Để (x+1)(x-2)<0 khi x+1 và x-2 trái dấu 

Mà x+1 > x-2 nên \(\hept{\begin{cases}x+1>0\\x-2< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x>-1\\x< 2\end{cases}}}\)

=> -1 < x < 2

Vậy -1 < x < 2

b) Đề \(\left(x-2\right)\left(x+\frac{2}{3}\right)>0\) khi x+2 và \(\frac{2}{3}\) cùng dấu

Với x+2 và \(x+\frac{2}{3}\) cùng dương : \(\hept{\begin{cases}x-2>0\\x+\frac{2}{3}>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>2\\x>\frac{-2}{3}\end{cases}}\Rightarrow x>2\)

Với x+2 và \(x+\frac{2}{3}\) cùng âm : \(\hept{\begin{cases}x-2< 0\\x+\frac{2}{3}< 0\end{cases}\Leftrightarrow}\hept{\begin{cases}x< 2\\x< \frac{-2}{3}\end{cases}}\Rightarrow x< \frac{-2}{3}\)

Vậy x>2 hoặc x < \(\frac{2}{3}\)

15 tháng 7 2019

\(\frac{x-3}{5}=\frac{x+4}{-2}\)

=> (x - 3). (-2) = 5(x + 4)

=> -2x + 6 = 5x + 20

=> -2x - 5x = 20 - 6

=> -7x = 14

=> x = 14 : (-7)

=> x = -2

15 tháng 7 2019

x-3/5=x+4/-2

=> ﴾x ‐ 3﴿. ﴾‐2﴿ = 5﴾x + 4﴿

 => ‐2x + 6 = 5x + 20 

=> ‐2x ‐ 5x = 20 ‐ 6 => ‐7x = 14 => x = 14 : ﴾‐7﴿ 

=> x = ‐2 

> =<

2 tháng 1 2017

 x^3/8 = y^3/64 = z^3/216 
=> (x/2)^3 = (y/4)^3 = (z/6)^3 
=> x/2 = y/4 = z/6 
=> x^2/4 = y^2/16 = z^2/36 = (x^2 + y^2 + z^2)/(4 + 16 + 36) = 14/56 = 1/4 (t.c dãy tỉ số bằng nhau) 
Suy ra : 
x^2 = 1 => x = 1 v x = -1 
y^2 = 4 => y = 2 v y = -2 
z^2 = 9 => z = 3 v z = -3

tk nha bạn

thank you bạn

(^_^)

2 tháng 1 2017

x3/8=y3/64=z3/216

<=>x3/23=y3/43=z3/63

<=>x2/22=y2/42=z2/62

áp dụng T/C dãy tỉ số = nhau

x2/22=y2/42=z2/62 = x2+y2+z2/22+42+62

=14/56=1/4

x2/22=1/4 -->x2=1.22/4-->x2=1-->x=1

y2/42=1/4-->y2=42.1/4-->y2=4-->y=2

z2/62=1/4-->z2=62.1/4-->z2=9-->z=3

/ x + 2 / > 7 

Th1 : \(x+2\ge0=>x\ge-2\)

PT trở thành :

 \(x+2>7\)

\(=>x>5\)

TH2 : \(x+2< 0=>x< -2\)

Pt trở thành :

 \(-x-2>7\)

\(=>-x=9=>x>-9\)

b) Th1 : \(x-1\ge0=>x\ge1\)

Ta có : \(x-1< 3=>x< 4\)

Th2 : \(x-1< 0=>x< 1\)

Ta có : \(-x+1< 3=>-x< 2=>x< -2\)