K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: =>x^2-x=3-x

=>x^2=3

=>x=căn 3 hoặc x=-căn 3

2: =>x^2-4x+3=x^2-4x+4 và x>=2

=>3=4(vô lý)

3: =>2|x-1|=6

=>|x-1|=3

=>x-1=3 hoặc x-1=-3

=>x=-2 hoặc x=4

4: =>|2x-3|=|x-2|

=>2x-3=x-2 hoặc 2x-3=-x+2

=>x=1 hoặc x=5/3

5: =>\(\sqrt{x+2}\left(\sqrt{x-2}+\sqrt{x+2}\right)=0\)

=>x+2=0

=>x=-2

NV
24 tháng 6 2019

a/ ĐKXĐ: ....

\(\Leftrightarrow2x^2+2x+4+2x-4=5\sqrt{\left(x-2\right)\left(x^2+x+2\right)}\)

\(\Leftrightarrow2\left(x^2+x+2\right)+2\left(x-2\right)=5\sqrt{\left(x-2\right)\left(x^2+x+4\right)}\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x^2+x+2}=a\\\sqrt{x-2}=b\end{matrix}\right.\)

\(\Leftrightarrow2a^2+2b^2=5ab\)

\(\Leftrightarrow\left(a-2b\right)\left(2a-b\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=2b\\2a=b\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+x+2}=2\sqrt{x-2}\\2\sqrt{x^2+x+2}=\sqrt{x-2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+x+2=4\left(x-2\right)\\4\left(x^2+x+2\right)=x-2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-3x+10=0\\4x^2+3x+10=0\end{matrix}\right.\)

Phương trình vô nghiệm

NV
24 tháng 6 2019

b/ ĐKXĐ: ....

\(\Leftrightarrow2x^2-x+1=\sqrt{4x^4+4x^2+1-4x^2}\)

\(\Leftrightarrow2x^2-x+1=\sqrt{\left(2x^2+1\right)^2-\left(2x\right)^2}\)

\(\Leftrightarrow2x^2-x+1=\sqrt{\left(2x^2-2x+1\right)\left(2x^2+2x+1\right)}\)

\(\Leftrightarrow\frac{3}{4}\left(2x^2-2x+1\right)+\frac{1}{4}\left(2x^2+2x+1\right)=\sqrt{\left(2x^2-2x+1\right)\left(2x^2+2x+1\right)}\)

Đặt \(\left\{{}\begin{matrix}\sqrt{2x^2-2x+1}=a\\\sqrt{2x^2+2x+1}=b\end{matrix}\right.\)

\(\Leftrightarrow3a^2+b^2=4ab\Leftrightarrow3a^2-4ab+b^2=0\)

\(\Leftrightarrow\left(a-b\right)\left(3a-b\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=b\\3a=b\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2x^2-2x+1}=\sqrt{2x^2+2x+1}\\3\sqrt{2x^2-2x+1}=\sqrt{2x^2+2x+1}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x^2-2x+1=2x^2+2x+1\\9\left(2x^2-2x+1\right)=2x^2+2x+1\end{matrix}\right.\)

26 tháng 9 2023

a) \(4\sqrt{2x+1}-\sqrt{8x+4}+\dfrac{1}{2}\sqrt{32x+16}=12\) (ĐK: \(x\ge-\dfrac{1}{2}\)

\(\Leftrightarrow4\sqrt{2x+1}-\sqrt{4\left(2x+1\right)}+\dfrac{1}{2}\cdot4\sqrt{2x+1}=12\)

\(\Leftrightarrow4\sqrt{2x+1}-2\sqrt{2x+1}+2\sqrt{2x+1}=12\)

\(\Leftrightarrow4\sqrt{2x+1}=12\)

\(\Leftrightarrow\sqrt{2x+1}=\dfrac{12}{4}\)

\(\Leftrightarrow2x+1=3^2\)

\(\Leftrightarrow2x=9-1\)

\(\Leftrightarrow2x=8\)

\(\Leftrightarrow x=\dfrac{8}{2}\)

\(\Leftrightarrow x=4\left(tm\right)\)

b) \(\sqrt{4x^2-4x+1}=5\)

\(\Leftrightarrow\sqrt{\left(2x-1\right)^2}=5\)

\(\Leftrightarrow\left|2x-1\right|=5\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-1=5\left(x\ge\dfrac{1}{2}\right)\\2x-1=-5\left(x< \dfrac{1}{2}\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=6\\2x=-4\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{6}{2}\\x=-\dfrac{4}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\left(tm\right)\\x=-2\left(tm\right)\end{matrix}\right.\)

c) \(\dfrac{2\sqrt{x}-3}{\sqrt{x}-1}=-\dfrac{1}{2}\)(ĐK: \(x\ge0;x\ne1\))

\(\Leftrightarrow-\left(\sqrt{x}-1\right)=2\left(2\sqrt{x}-3\right)\)

\(\Leftrightarrow-\sqrt{x}+1=4\sqrt{x}-6\)

\(\Leftrightarrow4\sqrt{x}+\sqrt{x}=1+6\)

\(\Leftrightarrow5\sqrt{x}=7\)

\(\Leftrightarrow\sqrt{x}=\dfrac{7}{5}\)

\(\Leftrightarrow x=\dfrac{49}{25}\left(tm\right)\)

10 tháng 5 2018

1000 bang 2

21 tháng 9 2017

aを見つける= 175度はどれくらい尋ねる