Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
BÀi 2:
Cả 4 câu áp dụng tính chất này: \(\sqrt{a^2}=a\)
a)\(\sqrt{\frac{3^2}{7^2}}=\frac{3}{7}\)
b)\(\frac{\sqrt{3^2}+\sqrt{39^2}}{\sqrt{7^2}+\sqrt{92^2}}=\frac{3+39}{7+92}=\frac{42}{99}=\frac{14}{33}\)
c)\(\frac{\sqrt{3^2}-\sqrt{39^2}}{\sqrt{7^2}-\sqrt{91^2}}=\frac{3-39}{7-91}=\frac{-36}{-84}=\frac{3}{7}\)
d)\(\sqrt{\frac{39^2}{91^2}}=\frac{39}{91}=\frac{3}{7}\)
b)Vì BCNN(3;5) = 15
\(\Rightarrow\frac{x}{2}=\frac{y}{3}\Leftrightarrow\frac{x}{2.5}=\frac{y}{3.5}=\frac{x}{10}=\frac{y}{15};\frac{y}{5}=\frac{z}{7}\Leftrightarrow\frac{y}{5.3}=\frac{z}{7.3}=\frac{y}{15}=\frac{z}{21}\)
\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x+y+z}{10+15+21}=\frac{92}{46}=2\)
\(\Rightarrow\left\{{}\begin{matrix}x=2.10=20\\y=2.15=30\\z=2.21=42\end{matrix}\right.\)
Vậy...
c)Vì BCNN(2;3;5) = 30
\(\Rightarrow2x=3y=5z\Leftrightarrow\frac{2x}{30}=\frac{3y}{30}=\frac{5z}{30}=\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
WTFFFFFF>>>
d)dễ... áp dụng tính chất DTBN là ra 1/2 rồi tính
e)Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(x=\frac{y}{2}=\frac{z}{4}=\frac{4x}{4}=\frac{3y}{6}=\frac{2x}{8}=\frac{4x-3y+2x}{4-6+8}=\frac{36}{6}=6\)
\(\Rightarrow\left\{{}\begin{matrix}x=6.1=6\\y=6.2=12\\z=6.4=24\end{matrix}\right.\)
Vậy...
a) ( x - 1/5 )2 = 0
<=> x - 1/5 = 0
<=> x = 1/5
b) ( x - 2 )2 = 1
<=> ( x - 2 )2 = ( ±1 )2
<=> x - 2 = 1 hoặc x - 2 = -1
<=> x = 3 hoặc x = 1
c) ( 2x - 1 )3 = -8
<=> ( 2x - 1 )3 = (-2)3
<=> 2x - 1 = -2
<=> 2x = -1
<=> x = -1/2
d) ( x4 )2 = x12/x5
<=> x8 = x7
<=> x8 - x7 = 0
<=> x7( x - 1 ) = 0
<=> x7 = 0 hoặc x - 1 = 0
<=> x = 0 hoặc x = 1
e) x10 = 25x8
<=> x10 - 25x8 = 0
<=> x8( x2 - 25 ) = 0
<=> x8 = 0 hoặc x2 - 25 = 0
<=> x = 0 hoặc x = ±5
f) ( 2x + 3 )2 = 9/121
<=> ( 2x + 3 )2 = ( ±3/11 )2
<=> 2x + 3 = 3/11 hoặc 2x + 3 = -3/11
<=> x = -15/11 hoặc x = -18/11
a) \(\left(x-\frac{1}{5}\right)^2=0\Leftrightarrow x-\frac{1}{5}=0\Leftrightarrow x=\frac{1}{5}\)
b) \(\left(x-2\right)^2=1\)
\(\Leftrightarrow\left(x-2\right)^2-1=0\)
\(\Leftrightarrow\left(x-2-1\right)\left(x-2+1\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}}\)
c) \(\left(2x-1\right)^3=-8\)
\(\Leftrightarrow\left(2x-1\right)^3+8=0\)
\(\Leftrightarrow\left(2x-1+8\right)\left[\left(2x-1\right)^2-8\left(2x-1\right)+64\right]=0\)
\(\Leftrightarrow2x+7=0\)
\(\Leftrightarrow x=\frac{-7}{2}\)
d) ĐKXĐ : \(x\ne0\)
\(\left(x^4\right)^2=\frac{x^{12}}{x^5}\)
\(\Leftrightarrow x^8=x^7\)
\(\Leftrightarrow x^8-x^7=0\)
\(\Leftrightarrow x^7\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\left(ktm\right)\\x=1\left(tm\right)\end{cases}\Leftrightarrow x=1}\)
e) ĐKXĐ : x khác 0
\(x^{10}=25x^8\)
\(\Leftrightarrow x^2=25\Leftrightarrow x=5\)
f) \(\left(2x+3\right)^2=\frac{9}{121}\)
\(\Leftrightarrow\left(2x+3+\frac{3}{11}\right)\left(2x+3-\frac{3}{11}\right)=0\)
\(\Leftrightarrow\left(2x+\frac{36}{11}\right)\left(2x+\frac{30}{11}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{-18}{11}\\x=-\frac{15}{11}\end{cases}}\)
1. A = 75(42004 + 42003 +...+ 42 + 4 + 1) + 25
A = 25 . [3 . (42004 + 42003 +...+ 42 + 4 + 1) + 1]
A = 25 . (3 . 42004 + 3 . 42003 +...+ 3 . 42 + 3 . 4 + 3 + 1)
A = 25 . (3 . 42004 + 3 . 42003 +...+ 3 . 42 + 3 . 4 + 4)
A = 25 . 4 . (3 . 42003 + 3 . 42002 +...+ 3 . 4 + 3 + 1)
A =100 . (3 . 42003 + 3 . 42002 +...+ 3 . 4 + 3 + 1) \(⋮\) 100
a: \(\Leftrightarrow x\cdot\dfrac{4}{3}=\dfrac{5}{6}+\dfrac{1}{4}=\dfrac{13}{12}\)
\(\Leftrightarrow x=\dfrac{13}{12}:\dfrac{4}{3}=\dfrac{13}{12}\cdot\dfrac{3}{4}=\dfrac{39}{48}=\dfrac{13}{16}\)
b: \(\Leftrightarrow\left|x-\dfrac{1}{2}\right|=\dfrac{1}{2}+\dfrac{1}{3}=\dfrac{5}{6}\)
=>x-1/2=5/6 hoặc x-1/2=-5/6
=>x=4/3 hoặc x=-1/3
c: \(\left(x+20\right)^{100}+\left|y+4\right|=0\)
=>x+20=0 và y+4=0
=>x=-20 và y=-4
Bài 1 :
a. \(\left|x-\frac{1}{3}\right|< \frac{5}{2}\)
TH1 : nếu \(\left|x-\frac{1}{3}\right|>0\)
\(x-\frac{1}{3}< \frac{5}{3}\)
\(x< 2\)
TH2 : nếu \(\left|x-\frac{1}{3}\right|< 0\)
\(\frac{1}{3}-x< \frac{5}{3}\)
\(x>-\frac{4}{3}\)
Bài 2 :
a. \(\left(x-2\right)^2=1\)
\(\left(x-2\right)^2-1=0\)
\(\left(x-2-1\right)\left(x-2+1\right)=0\)
\(\left(x-3\right)\left(x-1\right)=0\)
\(\left[\begin{array}{nghiempt}x-3=0\\x-1=0\end{array}\right.\)
\(\left[\begin{array}{nghiempt}x=3\\x=1\end{array}\right.\)
a) Ta có : \(\hept{\begin{cases}\left|\frac{x}{3}-1\right|\ge0\\\left(2x-6\right)^2\ge0\\\sqrt{x-3}\ge0\end{cases}}\)
Mà \(\left|\frac{x}{3}-1\right|+\left(2x-6\right)^2+\sqrt{x-3}=0\)
\(\Leftrightarrow\hept{\begin{cases}\frac{x}{3}-1=0\\2x-6=0\\x-3=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=3\\x=3\\x=3\end{cases}\Leftrightarrow}x=3}\)
Vậy x = 3
b) \(2\times\sqrt{x}-3=4\)
\(\Leftrightarrow2\times\sqrt{x}=7\)
\(\Leftrightarrow\sqrt{x}=\frac{7}{2}\)
\(\Leftrightarrow x=\frac{49}{4}\)
Bài 1:
a) \(2\left(x-\sqrt{12}\right)^2=6\Rightarrow\left(x-\sqrt{12}\right)^2=3\)
TH1l \(x-\sqrt{12}=\sqrt{3}\Rightarrow x=\sqrt{3}+\sqrt{12}=3\sqrt{3}\)
TH2: \(x-\sqrt{12}=-\sqrt{3}\Rightarrow x=-\sqrt{3}+\sqrt{12}=\sqrt{3}\)
b) \(2x-\sqrt{x}=0\Leftrightarrow\sqrt{x}\left(2\sqrt{x}-1\right)=0\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=0\\2\sqrt{x}-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\\sqrt{x}=\frac{1}{2}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{4}\end{cases}}\)
c) \(|2x+\sqrt{\frac{9}{16}}|-x=\left(\frac{1}{\sqrt{2}}\right)^2\Leftrightarrow\left|2x+\frac{3}{4}\right|-x=\frac{1}{2}\)
TH1: \(2x+\frac{3}{4}\ge0\Leftrightarrow x\ge-\frac{3}{8}\)
Ta có \(2x+\frac{3}{4}-x=\frac{1}{2}\Leftrightarrow x=-\frac{1}{4}\left(tm\right)\)
TH2: \(x< -\frac{3}{8}\)
Ta có \(-2x-\frac{3}{4}-x=\frac{1}{2}\Leftrightarrow-3x=\frac{5}{4}\Leftrightarrow x=-\frac{5}{12}\left(tm\right)\)
Bài 2: Để \(A=\frac{2\sqrt{x}+3}{\sqrt{x}-2}\) là số nguyên thì \(\frac{2\sqrt{x}+3}{\sqrt{x}-2}\in Z\)
Ta có \(\frac{2\left(\sqrt{x}-2\right)+7}{\sqrt{x}-2}=2+\frac{7}{\sqrt{x}-2}\)
Để \(\frac{2\sqrt{x}+3}{\sqrt{x}-2}\in Z\) thì \(\frac{7}{\sqrt{x}-2}\in Z\Rightarrow\sqrt{x}-2\inƯ\left(7\right)\)
Do \(\sqrt{x}-2\ge-2\Rightarrow\sqrt{x}-2\in\left\{-1;1;7\right\}\)
\(\Rightarrow x\in\left\{1;9;81\right\}\)