Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT AM-GM
\(\sqrt[3]{\left(a+b\right).\frac{2}{3}.\frac{2}{3}}\le\frac{a+b+\frac{2}{3}+\frac{2}{3}}{3}\)
\(\sqrt[3]{\left(b+c\right).\frac{2}{3}.\frac{2}{3}}\le\frac{b+c+\frac{2}{3}+\frac{2}{3}}{3}\)
\(\sqrt[3]{\left(c+a\right).\frac{2}{3}.\frac{2}{3}}\le\frac{c+a+\frac{2}{3}+\frac{2}{3}}{3}\)
\(\Rightarrow S.\sqrt[3]{\frac{2}{3}.\frac{2}{3}}\le\frac{2\left(a+b+c\right)+\frac{2}{3}.6}{3}=\frac{2.1+4}{3}=2\)
\(\Leftrightarrow S\le2:\sqrt[3]{\frac{4}{9}}=\frac{2.\sqrt[3]{9}}{\sqrt[3]{4}}\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}a,b,c>0\\a+b+c=1\\a+b=b+c=c+a=\frac{2}{3}\end{cases}\Leftrightarrow a=b=c=\frac{1}{3}}\)
Vậy...
Sử dụng BĐT AM-GM ta có:
\(\sqrt[3]{a+b}=\frac{\sqrt[3]{\frac{2}{3}.\frac{2}{3}.\left(a+b\right)}}{\sqrt[3]{\frac{4}{9}}}\le\frac{\frac{2}{3}+\frac{2}{3}+a+b}{3.\sqrt[3]{\frac{4}{9}}}\)
Tương tự cộng lại suy ra
\(S\le\frac{6.\frac{2}{3}+2\left(a+b+c\right)}{3.\sqrt[3]{\frac{4}{9}}}=\frac{6}{3.\sqrt[3]{\frac{4}{9}}}=\sqrt[3]{18}\)
Dấu = xảy ra khi \(a=b=c=\frac{1}{3}\)
Sử dụng BĐT AM-GM ta có:
\(\sqrt[3]{a\left(b+2c\right)}=\frac{\sqrt[3]{3.3a.\left(b+2c\right)}}{\sqrt[3]{9}}\le\frac{3+3a+b+2c}{3.\sqrt[3]{9}}\)
Tương tự:
\(\sqrt[3]{b\left(c+2a\right)}\le\frac{3+3b+c+2a}{3\sqrt[3]{9}}\)
\(\sqrt[3]{c\left(a+2b\right)}\le\frac{3+3c+a+2b}{3\sqrt[3]{9}}\)
Cộng lại ta có:
\(S\le\frac{9+6\left(a+b+c\right)}{3\sqrt[3]{9}}=\frac{27}{3\sqrt[3]{9}}=3.\sqrt[3]{3}\)
Dấu = xảy ra khi a=b=c=1
b)(2x - 1)^2 - (2x + 5) (2x - 5 ) = 18
4x 2 -4x+1-4x 2+25=18
26-4x=18
4x=8
x=2
a,27x-18=2x-3x^2
<=> 3x^2-2x+27-18x=0
<=> 3x^2-20x+27=0
\(\Delta\)= 20^2-4-12.27
tính \(\Delta\)rồi tìm x1 ,x2
a) \(\frac{x^2+5x}{5x^2+x^3}\)
\(=\frac{x\left(x+5\right)}{x^2\left(x+5\right)}=\frac{1}{x}\)
b) \(\frac{x^4+x^2+1}{x^3+1}\)
\(=\frac{\left(x^2+x+1\right)\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(=\frac{x^2+x+1}{x+1}\)
\(a)\frac{x^2+5x}{5x^2+x^3}=\frac{x\left(x+5\right)}{x^2\left(5+x\right)}=\frac{1}{x}\)
Với \(-2\le x\le3\) => \(x+2\ge0\)và \(3-x\ge0\)
Áp dụng BĐT Cosi ta được :
\(y=\left(x+2\right)\left(3-x\right)\le\left[\frac{\left(x+2\right)+\left(3-x\right)}{2}\right]^2=\frac{25}{4}\)
\(\Rightarrow y_{Max}=\frac{25}{4}\) , khi \(x+2=3-x\Leftrightarrow x=\frac{1}{2}\)
Bài 1
a, Với \(x=9\)thì \(A=\frac{3+\sqrt{x}}{\sqrt{x}}=\frac{3}{\sqrt{x}}+1=\frac{3}{3}+1=2\)
b, Để \(A=\frac{5}{2}\)thì \(\frac{3+\sqrt{x}}{\sqrt{x}}=\frac{3}{\sqrt{x}}+1=\frac{5}{2}< =>\frac{3}{\sqrt{x}}=\frac{3}{2}< =>x=4\)
Bài 2
a, \(B=\frac{\sqrt{x}-2}{\sqrt{x}}+\frac{4\sqrt{x}+2}{x+\sqrt{x}}\left(đk:x>0\right)\)
\(=1-\frac{2}{\sqrt{x}}+\frac{4\sqrt{x}+2}{x+\sqrt{x}}=\frac{x+5\sqrt{x}+2}{x+\sqrt{x}}-\frac{2}{\sqrt{x}}\)
\(=\frac{x\sqrt{x}+5x+2\sqrt{x}-2x-2\sqrt{x}}{x\sqrt{x}+x}=\frac{x\sqrt{x}+3x}{x\sqrt{x}+x}\)
\(=1+\frac{2x}{x\left(\sqrt{x}+1\right)}=1+\frac{2}{\sqrt{x}+1}=\frac{\sqrt{x}+3}{\sqrt{x}+1}\)
\(A=\frac{3+\sqrt{x}}{\sqrt{x}}\)Thay x = 9 ta có :
\(VT=\frac{3+\sqrt{9}}{\sqrt{9}}=\frac{3+3}{3}=2\)
Bài ra ta có : \(A=\frac{3+\sqrt{x}}{\sqrt{x}}=\frac{5}{2}\)
\(\Leftrightarrow\frac{3}{\sqrt{x}}+\frac{\sqrt{x}}{\sqrt{x}}=\frac{5}{2}\Leftrightarrow\frac{3}{\sqrt{x}}+1=\frac{5}{2}\)
\(\Leftrightarrow\frac{3}{\sqrt{x}}=\frac{3}{2}\Leftrightarrow\sqrt{x}=2\Leftrightarrow x=4\)
\(A=\dfrac{\sqrt{x-9}}{5x}\left(ĐKx\ge9\right)\)
A'=\(\dfrac{\dfrac{5x}{2\sqrt{x-9}}-5\sqrt{x-9}}{\left(5x^2\right)}\)
\(A'=0\rightarrow5x=10\left(x-9\right)\)
\(\rightarrow x=18\)
\(MaxA=\dfrac{1}{30}\) khi \(x=18\)
\(A=\dfrac{2.3\sqrt{x-9}}{30x}\le\dfrac{3^2+x-9}{30x}=\dfrac{1}{30}\)
\(A_{max}=\dfrac{1}{30}\) khi \(\sqrt{x-9}=3\Leftrightarrow x=18\)