Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3x-1 + 5 . 3x-1 = 486
3x-1 . ( 5 + 1 ) = 486
3x-1 . 6 = 486
3x-1 = 486 : 6
3x-1 = 81
3x-1 = 34
=> x - 1 = 4
x = 4 + 1
x = 5
Vậy x = 5
3x-1 + 5.3x-1 = 486
1.3x-1 + 5.3x-1 = 486
=> 3x-1.( 1 + 5) = 486
3x-1. 6 = 486
3x - 1 = 486 : 6
3 x - 1 = 81
3 x - 1 = 34
=> x - 1 = 4
x = 4 + 1
x = 5
NHỚ **** NHÉ !!!!!!!!!!!!!!!!!!!!!!!!
\(3^{x-1}+5.3^{x-1}=486\)
\(\Rightarrow3^{x-1}.\left(5+1\right)=486\)
\(3^{x-1}.6=486\)
\(3^{x-1}=81\)
\(3^{x-1}=3^4\)
\(\Rightarrow x-1=4\)
\(\Rightarrow x=5\)
<=> 3x-1 +5.3x-1 =486
<=> 3x-1 . (1+5) = 486
<=> 3x-1 . 6 =486
<=> 3x-1 = 486 :6
<=> 3x-1 = 81
<=> 3x-1 = 34
<=> X-1=4
<=> X = 4+1
<=> X=5
\(2^{x+2}-2^x=96\)
\(\Rightarrow2^x\cdot2^2-2^x=96\)
\(\Rightarrow2^x\left(2^2-1\right)=96\)
\(\Rightarrow2^x\left(4-1\right)=96\)
\(\Rightarrow2^x\cdot3=96\)
\(\Rightarrow2^x=96:3\)
\(\Rightarrow2^x=32\)
\(\Rightarrow2^x=2^5\)
\(\Rightarrow x=5\)
\(5^x+5^{x+1}=750\)
\(\Rightarrow5^x+5^x\cdot5=750\)
\(\Rightarrow5^x\left(1+5\right)=750\)
\(\Rightarrow5^x\cdot6=750\)
\(\Rightarrow5^x=750:6\)
\(\Rightarrow5^x=125\)
\(\Rightarrow5^x=5^3\)
\(\Rightarrow x=3\)
\(2^{x+3}+2^x=144\)
\(\Rightarrow2^x\cdot2^3+2^x=144\)
\(\Rightarrow2^x\left(2^3+1\right)=144\)
\(\Rightarrow2^x\cdot9=144\)
\(\Rightarrow2^x=144:9\)
\(\Rightarrow2^x=16\)
\(\Rightarrow2^x=2^4\)
\(\Rightarrow x=4\)
Bài 2:
a: 15;20;35 đều chia hết cho x
x lớn nhất
Do đó: x=ƯCLN(15;20;35)=5
b: =>x=ƯCLN(12;54)=6
c: x chia hết cho 10 và 15
nên \(x\in B\left(30\right)\)
mà x<100
nên \(x\in\left\{30;60;90\right\}\)
d: x chia hếtcho 12 và 18
mà x<250
nên \(x\in\left\{36;72;108;144;180;216\right\}\)
\(3^x+3^{x+1}+3^{x+2}=3900\)
\(3^x+3^x.3+3^x.9=3900\)
\(3^x\left(1+3+9\right)=3900\)
\(3^x.13=3900\)
\(3^x=3900:13\)
\(3^x=300\)
1/
$xy=18=1.18=2.9=3.6=6.3=9.2=18.1$
Do $x,y$ là số tự nhiên nên $(x,y)=(1,18), (2,9), (3,6), (6,3), (9,2), (18,1)$
Bg
c) 9 < 3x : 3 < 81
=> 32 < 3x - 1 < 34
=> x - 1 = {2; 3; 4}
=> x = {3; 4; 5}
d) 5x . 5x + 1 . 5 x + 2 < 218 . 518 : 218
=> 5x + x + 1 + x + 2 < 218 : 218 . 518
=> 53x + 3 < 1.518
=> 53.(x + 1) < 518
=> 3.(x + 1) < 18
=> x + 1 < 18 : 3
=> x + 1 < 6
=> x < 6 - 1
=> x < 5
c. \(9\le3^x:3\le81\)
\(\Rightarrow3^2\le3^{x-1}\le3^4\)
\(\Rightarrow3^{x-1}\in\left\{3^2;3^3;3^4\right\}\)
\(\Rightarrow x-1\in\left\{2;3;4\right\}\)
\(\Rightarrow x\in\left\{3;4;5\right\}\)
d. Thêm đk : x thuộc N
\(5^x.5^{x+1}.5^{x+2}\le2^{18}.5^{18}:2^{18}\)
\(\Rightarrow5^{x+x+1+x+2}\le5^{18}\)
\(\Rightarrow x+x+x+1+2\le18\)
\(\Rightarrow3x+3\le18\)
\(\Rightarrow3\left(x+1\right)\le18\)
\(\Rightarrow x+1\le6\)
\(\Rightarrow x\le5\)
\(\Rightarrow x\in\left\{1;2;3;4;5\right\}\)
Bài 1:
a, 5x . 5x+1 . 5x+2 = 1018 : 218
5x+x+1+x+2 = (10 : 2)18
53x+3 = 518
3x + 3 = 18
3x = 18 - 3
3x = 15
x = 15 : 3
x = 5
Vậy x = 5
b, x . (x2)3 = x5
x . x6 = x5
x7 = x5
x = 1 hoặc x = 0
Vậy x ∈ { 1; 0 }
Bài 2
A = 3 + 32 + 33 + ... + 3100
3A = 32 + 33 + ... + 3100
3A - A = 3100 - 3
2A = 3100 - 3
2A + 3 = 3100 - 3 + 3
2A + 3 = 3100
⇒ n = 100
Vậy n = 100
Học tốt❤
\(3^x\cdot3^{x+1}\cdot18=486\)
\(\Leftrightarrow2x+1=3\)
hay x=1
\(3^x.3^{x+1}.18=486\)
\(3^x.3^{x+1}=27\)
\(3^{2x+1}=27\)
\(\Rightarrow2x+1=3\)
\(\Rightarrow x=1\)