Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có: \(3^{1994}+3^{1993}-3^{1992}=3^{1992}\left(3^2+3-1\right)=11\cdot3^{1992}\)
=>đpcm
51994 + 51993 - 51992 =51992(52+5-1)=51992.29 chia het cho 29
=> 51994 + 51993 - 51992 chia hết cho 29
=\(5^{1992}\left(5^2+5-1\right)\)
=\(5^{1992}\cdot29\)
mà 29 chia hết cho 29 => \(5^{1992}\cdot29\) chia hết cho 29
Vậy ....
a.2014100 + 201499
=201499.(2014+1)
=201499.2015
=> 2014100 + 201499 chia hết cho 2015
b.31994 + 31993 _ 31992
=31992.(32+3-1)
=31992.11
=>31994 + 31993 _ 31992 chia hết cho 11
c. 413 _ 325 _ 88
=(22)13-(25)5-(23)8
=226-225-224
=224.(22-2-1)
=224.5
=> 413 _ 325 _ 88 chia hết cho 5
a)\(2014^{100}+2014^{99}=2014^{99}.\left(2014+1\right)=2014^{99}.2015⋮2015\left(\text{Đ}PCM\right)\)
b)\(3^{1994}+3^{1993}-3^{1992}=3^{1992}.\left(3^2+3-1\right)=3^{1992}.\left(9+3-1\right)=3^{1992}.11⋮11\left(\text{Đ}PCM\right)\)
c)\(4^{13}-32^5-8^8=\left(2^2\right)^{13}-\left(2^5\right)^5-\left(2^3\right)^8=2^{26}-2^{25}-2^{24}=2^{24}.\left(2^2-2-1\right)\)
Đề sai rồi bạn 2^14 luôn tận cùng chẵn =>2^14 không chia hết cho 5
Chúc bạn học tốt
1992 đồng dư với 4 (mod 7)
\(1992^3\) đồng dư với 1 (mod 7)
=> \(\left(1992^3\right)^{664}\)đồng dư với \(1^{664}\) và đồng dư với 1 (mod 7)
1994 đồng dư với 6 (mod 7)
\(1994^2\) đồng dư với 1 (mod 7)
=> \(\left(1994^2\right)^{997}\)đồng dư với \(1^{997}\) và đồng dư với 1 (mod 7)
\(1992^{1993}+1994^{1995}\)
\(=1992.\left(1992^3\right)^{664}+1994.\left(1994^2\right)^{997}\)
\(=4.1+6.1=24\)
Vậy số dư là 24
Vấn đề Nguyệt muốn hỏi là tại sao tự dưng bạn phía trên lại có thể làm ra như vậy khi số dư 24 lớn hơn số chia ~ :)