Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì 3 và 19 là các số lẻ lên 3^x và 19^y luôn lẻ .
=> 3^100 và 19^900 đều là số lẻ .
Mà số lẻ + số lẻ = số chẵn . Số chẵn lại chia hết cho 2
=> 3^100 + 19^900 chia hết cho 2
Ta có : \(3^{100}=3^{4.25}=\left(3^4\right)^{25}\)
Mà \(3^4\) có chữ số tận cùng là 1 nên \(\left(3^4\right)^{25}\)có chữ số tận cùng là 1
\(19^{990}\) có chữ số tận cùng là 1
\(\Rightarrow3^{100}+19^{990}\) có chữ số tận cùng là 2
\(\Rightarrow\left(3^{100}+19^{990}\right)⋮2\)
3x có chữ số tận cùng là số lẻ
Suy ra 3100 có chữ số tận cùng là số lẻ
19990 có chữ số tận cùng là số lẻ
Suy ra 3100 +19990 có chữ số tận cùng là : lẻ + lẻ = chẵn
Vậy 3100 +19990 chia hết cho 2
3x có chữ số tận cùng là số lẻ
Suy ra 3100 có chữ số tận cùng là số lẻ
19990 có chữ số tận cùng là số lẻ
Suy ra 3100 +19990 có chữ số tận cùng là : lẻ + lẻ = chẵn
Vậy 3100 +19990 chia hết cho 2
Câu 1: Giải
Ta có :\(\hept{\begin{cases}3^{100}=3^{4.25}=\overline{...1}\\19^{990}=19^{998+2}=19^{247.4}.19^2=\overline{...1}.\overline{...1}=\overline{...1}\end{cases}}\)
\(\Rightarrow3^{100}+19^{990}=\left(...1\right)+\left(...1\right)=\left(...2\right)⋮2\left(đpcm\right)\)
Câu 2 : Giải
Đặt \(d=\left(12n+1,20n+2\right)\)
\(\Rightarrow\hept{\begin{cases}\left(12n+1\right)⋮d\\\left(30n+2\right)⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}\left[5\left(12n+1\right)\right]⋮d\\\left[2\left(30n+2\right)\right]⋮d\end{cases}}\)
\(\Leftrightarrow\left[5\left(12n+1\right)-2\left(30n+2\right)\right]⋮d\)
hay \(\left[60n+5-60-4\right]⋮d\)
\(\Leftrightarrow1⋮d\Leftrightarrow d=1\)
Vậy \(\frac{12n+1}{30n+2}\) tối giản với mọi n \(\inℤ\)
Ta có:3,7,9 nhân lên lũy thừa 4n sẽ có chữ số tận cùng =1
1.
3100+19990=...1+19988.192
=...1+...1. (...1)
= ...1+...1
=...2 chia hết cho 2(số có chữ số tận cùng là chữ số chẵn chia hết cho 2)
2.
Gọi ƯC(12n+1,30n+2)=d
ta có: 12n+1 chia hết cho d=>5(12n+1) chia hết cho d=>60n+5 chia hết cho d (1)
30n+2 chia hết cho d=>2(30n+2) chia hết cho d=>60n+4 chia hết cho d (2)
Từ (1) và (2),suy ra: 60n+5-(60n+4) chia hết cho d
60n+5-60n-4 chia hết cho d
5-4 chia hết cho d
1 chia hết cho d
Ư(1)={1;-1}
=>bất cứ số nguyên n nào cx thích hợp để 12n+1/30n+2 là P/S tối giản!
\(C=1+3+3^2+.....+3^{11}.\)
\(\Rightarrow C=\left(1+3+3^2\right)+.....+\left(3^9+3^{10}+3^{11}\right)\)
\(\Rightarrow C=13+3^3.13+....+3^9.13\)
\(\Rightarrow C=13.\left(1+3^3+....+3^9\right)\)
Vì \(13⋮13\)
Do đó : \(C⋮13\)
\(C=1+3+3^2+.....+3^{11}\)
\(\Rightarrow C=\left(1+3+3^2+3^3\right)+....+\left(3^8+3^9+3^{10}+3^{11}\right)\)
\(\Rightarrow C=40+40.3^4+3^8.40\)
\(\Rightarrow C=40.\left(1+3^4+3^8\right)\)
Vì \(40⋮40\)
Do đó \(C⋮40\)(đpcm)
a,C1+3+32)+.....+39,(1+3+32)
C=13+.....+39.13
C=13(1+.....+39) chia hết cho 13
Vậy C chia hết cho 13
b,C=(1+3+32+33)+.....+38(1+3+32+33)
C=40+.....+38+40
C=40(1+.....+38.40
C=40(1+.....+38 chia hết cho 40
Vậy C chia hết cho 40
a) vì 3100 và 19990 đều là số lẻ
=> 3100+19990 là số chẵn
=> 3100+19990 chia hết cho 2(đpcm)
b) Gọi 4 số tự nhiên liên tiếp lần lượt là: a, a+1, a+2, a+3 (a thuộc N)
có a+a+1+a+2+a+3=4a+6
vì 4a chia hết cho 4 và 6 không chia hết cho 4
=> 4a+6 không chia hết cho 4
=> tổng 4 số tự nhiên liên tiếp không chia hết cho 4
Bạn tham khảo link này:
https://olm.vn/hoi-dap/detail/213829942495.html