K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 9 2023

\(3^6:3^2+2^3.2^2-3^3.3\)

\(=3^4+2^5-3^4\)

\(=3^4-3^4+2^5\)

\(=0+2^5=2^5\)

26 tháng 9 2023

\(3^6:3^2+2^3.2^2-3^3.3\\ =3^4+2-3^4\\ =\left(3^4-3^4\right)+2\\ =0+2\\ =2.\)

23 tháng 7 2023

a, 21.52.17 = 2.25.17 = 50.17 = 850 

b, 22 + 23 + 24 = 4 + 8 + 16 = 28

c, 25.3 + 24:8 + 50: 52

= 32.3 + 16:8 + 50:25

=96 + 2 + 2

= 100

d, 112 - 102 - 32

= 121 - 100 - 9

= 21 - 9

= 12

e, 13 + 23 + 33 + 43 + 53

= ( 1+ 2+3+4+5)2

= 152

= 225

1 tháng 10 2018

a)31x32x33x........x3100

=31+2+3+4+...+100

=3(100+1)x(100-1+1):2

=3101x100:2

=35050

Bài b mình không biết làm

2 tháng 10 2018

thank nha

23 tháng 10 2016

S = 2 + 23 + ... + 221

=> 4S = 23 + 25 + ... + 223

=> 4S - S = 223 - 2

=> S = \(\frac{2^{23}-2}{3}\)

Theo bài ra: 22.S = 4.\(\frac{2^{23}-2}{3}\)=11184808

18 tháng 11 2021

S = ( 21 + 22 ) + ( 23 + 24 ) + ..... + ( 259 + 260 )

S = 2 x ( 1 + 2 ) + 23 x ( 1 + 2 ) + .......... + 259 x ( 1 + 2 )

S = 2 x 3 + 23 x 3 + ..... + 259 x 3

S = ( 2 + 23 + ........ + 259 ) x 3

mà 3 \(⋮\)3 => S \(⋮\) 3

18 tháng 11 2021

Ta có :

S= 2^1+2^2+2^3+...+2^60

S= (2^1+2^2)+(2^3+2^4)+...+(2^59+2^60)

s=2(1+2)+2^3(1+2)+...+2^59(1+1)

S= 3(2+2^3+...+2^59)

=> đpcm

29 tháng 12 2020

đặt A=1+2+2^2+2^3+2^4+2^5+2^6+2^7

2A=2+2^2+2^3+2^4+2^5+2^6+2^7+2^8

2A-A=(2+2^2+2^3+2^4+2^5+2^6+2^7+2^8)-(1+2+2^2+1^3+2^4+2^5+2^6+2^7)

A=2^8-1

A=256-1=255

255 chia hết cho 3

nên 1+2+2^2+2^3+2^4+2^5+2^6+2^7 cũng chia hết cho 3

21 tháng 7 2017

A = 1 + 2 + 22 + 23 + ...+ 26 + 27 

= ( 1 + 2) + ( 22 +23 ) +( 24 + 25 ) + ( 26 + 27)           ''   có tất cả 8 số chia thành 4 cặp nhé ''

=3 + 22. ( 1 + 2) +  24.(1+2) + 26. ( 1 + 2) 

= 3 + 22 .3 + 24.3+ 2.3

= 3. ( 1 +2+ 24 + 26 ) chia hết cho 3.

28 tháng 1 2024

\(\Rightarrow3S=3^2+3^3+3^4+...+3^{2023}\)

trừ vế với vế ta được :

\(3S-S=3^{2023}-3\)

\(\Rightarrow2S=3^{2023}-3\)

\(\Rightarrow S=\dfrac{3^{2023}-3}{2}\)