Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2: Cho A = 3 + 32 + 33 +......+ 3100. Tìm số nguyên x, biết: 2A + 3 = 3|x|
\(A=3+3^2+3^3+....+3^{100}\)
=> \(3A=3.\left(3+3^2+3^3+....+3^{100}\right)\)
=> \(3A=3^2+3^3+3^4+.....+3^{101}\)
\(\Rightarrow3A-A=\left(3^2+3^3+3^4+...+3^{101}\right)-\left(3+3^2+3^3+....+3^{100}\right)\)
\(\Rightarrow2A=3^2+3^3+3^4+....+3^{101}-3^1-3^2-3^3-...-3^{100}\)
\(\Rightarrow2A=3^{101}-3\)
Ta có: \(2A+3=3^{\left|x\right|}\)
=> \(\left(3^{101}-3\right)+3=3^{\left|x\right|}\)
=> \(3^{101}-3+3=3^{\left|x\right|}\)
=> \(3^{101}=3^{\left|x\right|}\)
=> 101 = |x|
=> \(\left[{}\begin{matrix}x=101\\x=-101\end{matrix}\right.\)
Vậy:..........................
P//s: Ko chắc!
câu 1:
câu a thì nhân 3 vào rồi lấy về trên cộng vế dưới ra 4A=?( tự triệt tiêu là thấy)
2a)
ta co: A=3^0+3^1+3^2+...........+3^2009
=>2A=3^1+3^2+3^3+...........+3^2010
=>2A=3^2010-3^0=3^2012-1
=>2A<3^2010
a) \(2^x.4=128\)
\(2^x=128:4\)
\(2^x=32\)
\(2^x=2^5\)
\(\Rightarrow x=5\)
vay \(x=5\)
b) \(\left(2x+1\right)^3=125\)
\(\left(2x+1\right)^3=5^3\)
\(\Rightarrow2x+1=5\)
\(\Rightarrow2x=4\)
\(\Rightarrow x=2\)
vay \(x=2\)
\(A=3+3^2+3^3+...+3^{100}\)
\(3A=3^2+3^3+3^4+...+3^{101}\)
\(3A-A=\left(3^2+3^3+...+3^{101}\right)-\left(3+3^2+...+3^{100}\right)\)
\(2A=3^{101}-3\)
\(A=\left(3^{101}-3\right):2\)
Ta có : \(2A+3=3^{101}\)
\(→n=101\)
~ Ủng hộ nhé ~
\(\Rightarrow3A=3^2+3^3+3^4+...+3^{2021}\\ \Rightarrow3A-A=3^2+3^3+...+3^{2021}-3-3^2-3^3-...-3^{2020}\\ \Rightarrow2A=3^{2021}-3\\ \Rightarrow2A+3=3^{2021}=3^x\\ \Rightarrow x=2021\)