Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(P=\frac{a-b}{a+b}\Rightarrow P^2=\frac{\left(a-b\right)^2}{\left(a+b\right)^2}=\frac{a^2-2ab+b^2}{a^2+2ab+b^2}=\frac{3a^2-6ab+3b^2}{3a^2+6ab+3b^2}=\frac{10ab-6ab}{10ab+6ab}=\frac{4ab}{16ab}=\frac{1}{4}\Rightarrow P=\frac{1}{2}\)
(Vì P > 0 và a>b>0)
\(\left(2x^m+7y^n\right)^2=4x^{2m}+28x^my^n+49y^{2n}\)
\(\left[\left(x-3\right)-z\right]^2=\left(x-3\right)^2-2\left(x-3\right)z+z^2=x^2-6x+9-2xz+6z+z^2\)
\(\left(4a^2-3b^2\right)\left(3b^2+4a^2\right)=\left(4a^2\right)^2-\left(3b^2\right)^2=16a^4-9b^4\)
Tham khảo nhé~
a, \(x^2-25-\left(x+5\right)=0\)
\(\Rightarrow x^2-5^2-\left(x+5\right)=0\)
\(\Rightarrow\left(x-5\right)\times\left(x+5\right)-\left(x+5\right)=0\)
\(\Rightarrow\left(x+5\right)\times\left(x-5-1\right)=0\)
\(\Rightarrow\left(x+5\right)\times\left(x-6\right)=0\)
\(\Rightarrow\hept{\begin{cases}x+5=0\\x-6=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=0-5=\left(-5\right)\\x=0+6=6\end{cases}}\)
b, \(\left(2x-1\right)^2-\left(4x^2-1\right)=0\)
\(\Rightarrow\left(2x-1\right)^2-\left(\left(2x\right)^2-1^2\right)=0\)
\(\Rightarrow\left(2x-1\right)^2-\left(2x-1\right)\times\left(2x+1\right)=0\)
\(\Rightarrow\left(2x-1\right)\times\left(2x-1-\left(2x+1\right)\right)=0\)
\(\Rightarrow\left(2x-1\right)\times\left(2x-1-2x-1\right)=0\)
\(\Rightarrow\left(2x-1\right)\times\left(-2\right)=0\)\(\Rightarrow\left(-4x\right)+2=0\)
\(\Rightarrow\left(-4x\right)=0-2=-2\)
\(\Rightarrow x=\frac{-2}{-4}=\frac{1}{2}\)
c, \(x^2\times\left(x^2+4\right)-x^2-4=0\)
\(\Rightarrow x^2\times\left(x^2+4\right)-\left(x^2+4\right)=0\)
\(\Rightarrow\left(x^2-1\right)\times\left(x^2+4\right)=0\)
\(\Rightarrow\hept{\begin{cases}x^2-1=0\\x^2+4=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x^2=1\\x^2=\left(-4\right)\end{cases}}\)
\(\Rightarrow x=1\)
\(6x^4-2x^3-x^2+2=0\)
\(\Leftrightarrow6x^4-8x^3+4x^2+6x^3-8x^2+4x+3x^2-4x+2=0\)
\(\Leftrightarrow2x^2\left(3x^2-4x+2\right)+2x\left(3x^2-4x+2\right)+\left(3x^2-4x+2\right)=0\)
\(\Leftrightarrow\left(3x^2-4x+2\right)\left(2x^2+2x+1\right)=0\)
Mà \(2x^2+2x+1=2\left(x+\frac{1}{2}\right)^2 +\frac{1}{2}>0\forall x\)
\(3x^2-4x+2=3\left(x-\frac{2}{3}\right)^2+\frac{2}{3}>0\left(\forall x\right)\)
Do đó tập nghiệm của pt là: \(S=\varnothing\)
Chúc bạn học tốt.
( a + 2 )3 - a( a - 3 )2
= a3 + 6a2 + 12a + 8 - a( a2 - 6a + 9 )
= a3 + 6a2 + 12a + 8 - a3 + 6a2 - 9a
= 12a2 + 3a + 8
cách của symbolab:
\(\left(a+2\right)^3-a\left(a-3\right)^2\)
\(=a^3+6a^2+12a+8-a\left(a-3\right)^2\)
\(=a^3+6a^2+12a+8-a\left(a^2-6a+9\right)\)
\(=a^3+6a^2+12a+8-a^3+6a^2-9a\)
\(=12a^2+3a+8\)
giúp mk vsssssss
ok