Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 5x2y2 + 20x2y4 - 35x5y3
= \(5x^2y^2\left(1+4y-7x^3y\right)\)
b) 2x ( x + y ) - 7x - 7y
\(=2x\left(x+y\right)-7\left(x+y\right)=\left(2x-7\right)\left(x+y\right)\)
c) 5x^2 ( x - 1 ) + 5 ( 1 - x )
\(5x^2\left(x+1\right)+5\left(1-x\right)=5x^2\left(x-1\right)-5\left(x-1\right)=\left(5x^2-5\right)\left(x-1\right)=5\left(x^2-1\right)\left(x+1\right)\)
= 5(x+1)(x-1)(x-1) = 5(x+1)(x-1)^2
Trả lời:
a, ( x + y )2 + ( x - y )2 - 2x2 = x2 + 2xy + y2 + x2 - 2xy + y2 - 2x2 = 2y2
b, 2( x - y )( x + y ) + ( x + y )2 + ( x - y )2
= 2( x2 - y2 ) + x2 + 2xy + y2 + x2 - 2xy + y2
= 2x2 - 2y2 + x2 + 2xy + y2 + x2 - 2xy + y2
= 4x2
c, ( x - 3 )( x + 3 ) - ( x - 5 )
= x2 - 9 - x + 5
= x2 - x - 4
d, ( 2x + 1 )2 + 2( 2x + 1 )( 3x - 1 ) + ( 3x - 1 )2
= 4x2 + 4x + 1 + ( 4x + 2 )( 3x - 1 ) + 9x2 - 6x + 1
= 4x2 + 4x + 1 + 12x2 - 4x + 6x - 2 + 9x2 - 6x + 1
= 25x2
e, ( 3x + 5 )2 - 2( 3x + 5 )( 2x + 5 ) + ( 2x + 5 )2
= 9x2 + 30x + 25 + ( - 6x - 10 )( 2x + 5 ) + 4x2 + 20x + 25
= 9x2 + 30x + 25 - 12x2 - 30x - 20x - 50 + 4x2 + 20x + 25
= x2
I,
\(B=\left(3x-1\right)^2-\left(x+7\right)^2-2\left(2x-5\right)\left(2x+5\right)\\ =9x^2-6x+1-x^2-14x-49-2\left(4x^2-25\right)\\ =8x^2-20x-48-8x^2+50\\ =-20x+2\)
II,
\(a,2x^2+6xy-10.Thayx=-4,y=3,tacó: 2\cdot\left(-4\right)^2+6\cdot\left(-4\right)\cdot3-10=-50\)
\(b,x\left(x+y\right)+y\left(x+y\right)=\left(x+y\right)\left(x+y\right)=\left(x+y\right)^2\\ Thayx=19,6;y=0,4tacó:\\ \left(19,6+0,4\right)^2=400\)
\(c,x\left(x-3\right)-y\left(3-x\right)=x\left(x-3\right)+y\left(x-3\right)=\left(x+y\right)\left(x-3\right)\\ Thayx=\frac{1}{3};y=\frac{8}{3},tacó:\\ \left(\frac{1}{3}+\frac{8}{3}\right)\left(\frac{1}{3}-3\right)=-8\)
\(d,2x^2\left(x^2+y^2\right)+2y^2\left(x^2+y^2\right)+5\left(x^2+y^2\right)\\ =\left(x^2+y^2\right)\left[2\left(x^2+y^2\right)+5\right]\\ Thayx^2+y^2=1,tacó:\\ 1\cdot\left(2\cdot1+5\right)=7\)
a: \(=\dfrac{4x^2+4x+1-4x^2+4x-1}{\left(2x+1\right)\left(2x-1\right)}\cdot\dfrac{5\left(2x-1\right)}{4x}\)
\(=\dfrac{8x\cdot5}{4x\left(2x+1\right)}=\dfrac{10}{2x+1}\)
b: \(=\left(\dfrac{1}{x^2+1}+\dfrac{x-2}{x+1}\right):\dfrac{1+x^2-2x}{x}\)
\(=\dfrac{x+1+x^3+x-2x^2-2}{\left(x+1\right)\left(x^2+1\right)}\cdot\dfrac{x}{\left(x-1\right)^2}\)
\(=\dfrac{x^3-2x^2+2x-1}{\left(x+1\right)\left(x^2+1\right)}\cdot\dfrac{x}{\left(x-1\right)^2}\)
\(=\dfrac{\left(x-1\right)\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2+1\right)}\cdot\dfrac{x}{\left(x-1\right)^2}\)
\(=\dfrac{x\left(x^2-x+1\right)}{\left(x^2-1\right)\left(x^2+1\right)}\)
c: \(=\dfrac{1}{x-1}-\dfrac{x^3-x}{x^2+1}\cdot\left(\dfrac{1}{\left(x-1\right)^2}-\dfrac{1}{\left(x-1\right)\left(x+1\right)}\right)\)
\(=\dfrac{1}{x-1}-\dfrac{x\left(x-1\right)\left(x+1\right)}{x^2+1}\cdot\dfrac{x+1-x+1}{\left(x-1\right)^2\cdot\left(x+1\right)}\)
\(=\dfrac{1}{x-1}-\dfrac{x}{x^2+1}\cdot\dfrac{2}{\left(x-1\right)}\)
\(=\dfrac{x^2+1-2x}{\left(x-1\right)\left(x^2+1\right)}=\dfrac{x-1}{x^2+1}\)
a. gọi phần đầu đấy là A nhá, để đỡ cần viết lại
A=...............
= (3x+5)2 + ( 3x-5)2 - 9x2 -4
= (9x2 +30x + 25 ) + ( 9x2 -30x+ 25 ) - 9x2 -4
= 9x2 +30x + 25 + 9x2 -30x+25-9x2 -4
= 9x2 + 46
sai thì thôi nhé. bạn nên kiểm tra lại
d. (2x-1)*(4x2 + 2x +1 ) - 8x*( x2 +1) - 5
= 8x3 -1 - 8x3 -8x-5
= -8x-6
= -2(4x+3)
sai nhé. bạn nên kiểm tra lại
a) ( 2x + 3 )2 - 2( 2x + 3 )( 2x + 5 ) + ( 2x + 5 )2
= [ ( 2x + 3 ) - ( 2x + 5 ) ]2
= ( 2x + 3 - 2x - 5 )2
= (-2)2 = 4
b) ( x2 + x + 1 )( x2 - x + 1 )( x2 - 1 )
= ( x4 - x3 + x2 + x3 - x2 + x + x2 - x + 1 )( x2 - 1 )
= ( x4 + x2 + 1 )( x2 - 1 )
= x6 - x4 + x4 - x2 + x2 - 1
= x6 - 1
c) ( x + y )2 + ( x - y )2
= x2 + 2xy + y2 + x2 - 2xy + y2
= 2x2 + 2y2 = 2( x2 + y2 )
d) 2( x - y )( x + y ) + ( x + y )2 + ( x - y )2
= [ ( x + y ) + ( x - y ) ]2
= ( x + y + x - y )2
= ( 2x )2 = 4x2
e) ( x - y + z )2 + ( z - y )2 + 2( x - y + z )( y - z )
= ( x - y + z )2 + ( z - y )2 - 2( x - y + z )( z - y )
= [ ( x - y + z ) - ( z - y ) ]2
= ( x - y + z - z + y )2
= x2
f) ( a + b - c )2 + ( a - b + c )2 - 2( b - c )2
= [ ( a + b ) - c ]2 + [ ( a - b ) + c ]2 - 2( b2 - 2bc + c2 )
= [ ( a + b )2 - 2( a + b )c + c2 ] + [ ( a - b )2 + 2( a - b )c + c2 ] - 2b2 + 4bc - 2c2
= a2 + b2 + c2 + 2ab - 2bc - 2ca + c2 + a2 + b2 + c2 - 2ab + 2bc + 2ac - 2b2 + 4bc - 2c2
= 2a2
g) ( a + b + c )2 + ( a - b - c )2 + ( b - c - a )2 + ( c - a - b )2
= [ ( a + b ) + c ]2 + [ ( a - b ) - c ]2 + [ ( b - c ) - a ]2 + [ ( c - a ) - b ]2
= [ ( a + b )2 + 2( a + b )c + c2 ] + [ ( a - b )2 - 2( a - b )c + c2 ] + [ ( b - c )2 - 2( b - c )a + a2 ] + [ ( c - a )2 - 2( c - a )b + b2 ]
= [ a2 + b2 + c2 + 2ab + 2bc + 2ca ] + [ a2 + b2 + c2 - 2ab + 2bc - 2ca ] + [ a2 + b2 + c2 - 2ab - 2bc + 2ca ] + [ a2 + b2 + c2 + 2ab - 2bc - 2ca ]
= 4a2 + 4b2 + 4c2
Có vẻ hơi dài dòng nhỉ :( Nhưng như này là kĩ nhất đấy :)
2 .tìm x
a , x ( x + 2 ) = 0
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
b, x ( x-5 )= 5 -x
<=> x ( x-5 ) + x - 5 = 0
<=> x (x-5) + ( x-5)= 0
<=> (x-5)(x+1 )=0
\(\Leftrightarrow\left\{{}\begin{matrix}x-5=0\\x+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=5\\x=-1\end{matrix}\right.\)
c) ( x + 1 ) ( 6x2 + 2x ) + ( x - 1 ) ( 6x2 + 2x ) = 0
\(\Leftrightarrow\) ( 6x2 + 2x ) \([\)(x+1)(x-1)\(]\)=0
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}2x\left(3x+1\right)=0\\x^{2^{ }}-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x=0\\3x+1=0\\x^2-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=\frac{-1}{3}\\x=1\end{matrix}\right.\)
1 ,a) 2a ( x - y ) - ( y - x ) = 2ax - 2ay - y + x
= x ( 2a + 1 ) - y ( 2a + 1 )
= ( 2a + 1 ) ( x - y )
b) a2 ( x - y ) - ( y - x ) = a2x - a2y - y + x
= x ( a2+ 1 ) - y ( a2 +1 )
= ( a2+1 ) - (x-y )
c) x ( x - y ) + y ( y - x ) - 3 ( x - y ) = x 2 - xy -+ y 2 - xy - 3x + 3y
= x2 - 2xy + y2 -3x + 3y
= (x-y)2 -3 ( x - y )
= ( x-y ) ( x-y+3)
a, \(\left(x-y\right)\left(x^2+xy+y^2\right)\)
\(=x^3+x^2y+xy^2-x^2y-xy^2-y^3=x^3-y^3\)
b, \(\left(a^3-2a^2+a-1\right)\left(a-5\right)\)
\(=a^4-2a^3+a^2-a-5a^3+10a^2-5a+5\)
\(=a^4-7a^3+11a^2-6a+5\)
c, \(\left(x^2-2x+y^2\right)\left(x-y\right)-3xy\left(y-x\right)\)
\(=x^3-2x^2+xy^2-x^2y+2xy-y^3-3xy^2+3x^2y\)
\(=x^3-2x^2-2xy^2-2x^2y+2xy-y^3\)
Bài 2:
a, \(\left(12x-5\right)\left(x+1\right)+\left(6x-2\right)\left(3-2x\right)=5\)
\(\Rightarrow12x^2+12x-5x-5+18x-12x^2-6+4x=5\)
\(\Rightarrow29x=5+5+6\)
\(\Rightarrow29x=16\Rightarrow x=\dfrac{16}{29}\)
b, \(\left(x-5\right)\left(2x+3\right)-2x\left(x-3\right)+x+7=-8\)
\(\Rightarrow2x^2+3x-10x-15-2x^2+6x+x+7=-8\)
\(\Rightarrow0x=-8\Rightarrow x\in\varnothing\)
Chúc bạn học tốt!!!
bn ơi đề bài là j vậy vì mik thấy đề cung đã chia thành nhân tử