K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
26 tháng 12 2023

Lời giải:

$\frac{3}{4}-(x+1\frac{1}{2})=(-1)^{2024}=1$

$x+\frac{3}{2}=\frac{3}{4}-1=\frac{-1}{4}$

$x=\frac{-1}{4}-\frac{3}{2}=\frac{-7}{4}$

9 tháng 1 2024

a, 2\(^3\) . x + 2005\(^0\) . x = 994-15:3+1\(^{2025}\) 

   8 .x + 1 . x = 990

x . [ 8 +1 ] = 990

x . 9 = 990

x = 990 : 9

x = 110

9 tháng 1 2024

các bạn giúp mình với mình đang vội.

 

a: \(\left(2^3\right)^{1^{2005}}\cdot x+2005^0\cdot x=9915:3+1^{2025}\)

=>\(8\cdot x+1\cdot x=3305+1\)

=>\(9x=3306\)

=>\(x=\dfrac{3306}{9}=\dfrac{1102}{3}\)

b: \(2^x+2^{x+1}+2^{x+2}+2^{x+3}=480\)

=>\(2^x+2^x\cdot2+2^x\cdot4+2^x\cdot8=480\)

=>\(2^x\left(1+2+4+8\right)=480\)

=>\(2^x\cdot15=480\)

=>\(2^x=32\)

=>\(2^x=2^5\)

=>x+5

 

TA
28 tháng 10 2023

4072299/4048

1 tháng 11 2023

cho mik câu trả lời cụ thể đc k bn

19 tháng 12 2024

(y - 1)2024 + |\(x+y-1\)| = 0

Vì (y - 1)2024 ≥ 0 ∀ y; |\(x+y-1\)| ≥ 0 ∀ \(x;y\)

(y - 1)2024 + |\(x+y-1\)| = 0 khi và chỉ khi 

 y - 1 = 0 và \(x+y-1\) = 0

y - 1 = 0 Suy ra y = 1. thay y = 1 vào biểu thức \(x+y-1=0\) ta có:

\(x+1-1=0\) ⇒ \(x=0-1+1\) \(x=0\)

Vậy \(x=0;y=1\) thay vào biểu thức A= \(x^{2024}\) + y2024 ta được:

A = 02024 + 12024 = 0 + 1 = 1 

AH
Akai Haruma
Giáo viên
25 tháng 7 2023

Có viết sai đề không vậy bạn?

=-1-(1/2+1/2^2+1/2^3+.....+1/2^10)

đặt A=(1/2+1/2^2+1/2^3+.....+1/2^10)

2A=2(1/2+1/2^2+1/2^3+.....+1/2^10)=1+1/2+...+1/2^9

A=(1+1/2+...+1/2^9)-(1/2+...+1/2^10)

A=1-1/2^10

=-1-1-1/2^10=......tự làm nha

12 tháng 1 2019

Đề chắc sai e ạ, a sửa luôn :

\(A=\frac{1}{2}-\frac{1}{4}-...-\frac{1}{1024}\)

\(A=\frac{1}{2}-\frac{1}{2^2}-...-\frac{1}{2^{10}}\)

\(2A=1-\frac{1}{2}-...-\frac{1}{2^9}\)

\(2A-A=\left(1-\frac{1}{2}-...-\frac{1}{2^9}\right)-\left(\frac{1}{2}-\frac{1}{2^2}-...-\frac{1}{2^{10}}\right)\)

\(A=1-\frac{1}{2}-...-\frac{1}{2^9}-\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{10}}\)

\(A=1-\left(\frac{1}{2}+\frac{1}{2}\right)+\frac{1}{2^{10}}\)

\(A=\frac{1}{2^{10}}\)

28 tháng 9 2023

\(\left(x-2\right)^4+\left(2y-1\right)^{2024}\le0\left(1\right)\)

Vì \(\left\{{}\begin{matrix}\left(x-2\right)^4\ge0\forall x\\\left(2y-1\right)^{2024}\ge0\forall x\end{matrix}\right.\)

\(\Rightarrow\left(x-2\right)^4+\left(2y-1\right)^{2024}\ge0\left(2\right)\)

Từ (1) và (2)

\(\Rightarrow\left(x-2\right)^4+\left(2y-1\right)^{2024}=0\)

\(\Rightarrow\left\{{}\begin{matrix}x=2\\y=\dfrac{1}{2}\end{matrix}\right.\)

\(M=21.2^2.\dfrac{1}{2}+4.2.\left(\dfrac{1}{2}\right)^2=21.2+4.2.\dfrac{1}{4}=42+2=44\)

28 tháng 9 2023

Ta có: \(\left(x-2\right)^4\ge0\forall x\)

           \(\left(2y-1\right)^{2024}\ge0\forall y\)

\(\Rightarrow\left(x-2\right)^4+\left(2y-1\right)^{2024}\ge0\forall x;y\)

Mặt khác: \(\left(x-2\right)^4+\left(2y-1\right)^{2024}\le0\)

nên \(\left(x-2\right)^4+\left(2y-1\right)^{2024}=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-2\right)^4=0\\\left(2y-1\right)^{2024}=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\2y-1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=\dfrac{1}{2}\end{matrix}\right.\)

Thay \(x=2\) và \(y=\dfrac{1}{2}\) vào \(M\), ta được:

\(M=21\cdot2^2\cdot\dfrac{1}{2}+4\cdot2\cdot\left(\dfrac{1}{2}\right)^2\)

\(=42+2\)

\(=44\)

Vậy \(M=44\) tại \(x=2;y=\dfrac{1}{2}\).

#\(Toru\)

17 tháng 10 2023

\(\left|2x-1\right|+\left(\dfrac{2}{3}-x\right)^{2024}=0\)

\(\left|2x-1\right|=-\left(\dfrac{2}{3}-x\right)^{2024}\)

Vì \(VT\ge0;VP\le0\)

Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}2x-1=0\\\dfrac{2}{3}-x=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{2}{3}\end{matrix}\right.\)(Loại)

17 tháng 10 2023

Tính Vẫn Bằng 0 Em Nhé!