K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\dfrac{3}{3\cdot5}+\dfrac{3}{5\cdot7}+...+\dfrac{3}{99\cdot101}\)

\(=\dfrac{3}{2}\left(\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{99\cdot101}\right)\)

\(=\dfrac{3}{2}\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\)

\(=\dfrac{3}{2}\left(\dfrac{1}{3}-\dfrac{1}{101}\right)=\dfrac{3}{2}\cdot\dfrac{98}{303}=\dfrac{49}{101}\)

23 tháng 2 2024

\(A=\dfrac{3}{3\times5}+\dfrac{3}{5\times7}+\dfrac{3}{7\times9}+...+\dfrac{3}{99\times101}\\2A=\dfrac{3\times2}{3\times5}+\dfrac{3\times2}{5\times7}+...+\dfrac{3\times2}{99\times101}\\ 2A=3\times\left(\dfrac{2}{3\times5}+\dfrac{2}{5\times7}+...+\dfrac{2}{99\times101}\right)\\ 2A=3\times\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\\ 2A=3\times \left(\dfrac{1}{3}-\dfrac{1}{101}\right)\\ 2A=3\times\dfrac{98}{303}\\ 2A=9898\\ A=4949.\)

18 tháng 2 2019

\(B=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{99.101}\)

\(\Rightarrow B=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)

\(\Rightarrow B=1-\frac{1}{101}=\frac{101}{101}-\frac{1}{101}=\frac{100}{101}\)

_Học tốt_

18 tháng 2 2019

100/101

3 tháng 5 2022

a) \(\left(1-\dfrac{1}{3}\right)\times\left(1-\dfrac{2}{5}\right)\times\left(1-\dfrac{2}{7}\right)\times\left(1-\dfrac{2}{9}\right)\)

\(=\left(\dfrac{3}{3}-\dfrac{1}{3}\right)\times\left(\dfrac{5}{5}-\dfrac{2}{5}\right)\times\left(\dfrac{7}{7}-\dfrac{2}{7}\right)\times\left(\dfrac{9}{9}-\dfrac{2}{9}\right)\)

\(=\dfrac{2}{3}\times\dfrac{3}{5}\times\dfrac{5}{7}\times\dfrac{7}{9}\)

\(=\dfrac{2\times3\times5\times7}{3\times5\times7\times9}\)

\(=\dfrac{2}{9}\)

b) \(\dfrac{1}{1\times3}+\dfrac{1}{3\times5}+\dfrac{1}{5\times7}+\dfrac{1}{7\times9}\)

\(=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}\)

\(=1-\dfrac{1}{9}\)

\(=\dfrac{9}{9}-\dfrac{1}{9}\)

\(=\dfrac{8}{9}\)

3 tháng 5 2022

Sửa câu b)

b) \(\dfrac{1}{1\times3}+\dfrac{1}{3\times5}+\dfrac{1}{5\times7}+\dfrac{1}{7\times9}\)

 

Đặt \(A=\dfrac{1}{1\times3}+\dfrac{1}{3\times5}+\dfrac{1}{5\times7}+\dfrac{1}{7\times9}\)

\(2A=\dfrac{2}{1\times3}+\dfrac{2}{3\times5}+\dfrac{2}{5\times7}+\dfrac{2}{7\times9}\)

\(2A=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}\)

\(2A=1-\dfrac{1}{9}\)

\(2A=\dfrac{9}{9}-\dfrac{1}{9}\)

\(2A=\dfrac{8}{9}\)

\(A=\dfrac{8}{9}:2\)

\(A=\dfrac{8}{18}\)

\(A=\dfrac{4}{9}\)

Vậy : \(\dfrac{1}{1\times3}+\dfrac{1}{3\times5}+\dfrac{1}{5\times7}+\dfrac{1}{7\times9}=\dfrac{4}{9}\)

24 tháng 10 2024

A = \(\dfrac{2}{1\times3}\) + \(\dfrac{2}{3\times5}\) + \(\dfrac{2}{5\times7}\) + \(\dfrac{2}{7\times9}\)

A = \(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}\) + \(\dfrac{1}{7}-\dfrac{1}{9}\)

A = \(\dfrac{1}{1}-\dfrac{1}{9}\)

A = \(\dfrac{8}{9}\)

24 tháng 10 2024

B = \(\dfrac{1}{3}+\dfrac{1}{15}\) + \(\dfrac{1}{35}+\) \(\dfrac{1}{63}\) + ... + \(\dfrac{1}{195}\)

B = \(\dfrac{1}{1\times3}\) + \(\dfrac{1}{3\times5}\) + \(\dfrac{1}{5\times7}\) + ...+ \(\dfrac{1}{13\times15}\)

B = \(\dfrac{1}{2}\) x (\(\dfrac{2}{1\times3}\) + \(\dfrac{2}{3\times5}\) + \(\dfrac{2}{5\times7}\) + ..+ \(\dfrac{1}{13}\) - \(\dfrac{1}{15}\))

B = \(\dfrac{1}{2}\) x (\(\dfrac{1}{1}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}-\dfrac{1}{5}\) + ...+\(\dfrac{1}{13}-\dfrac{1}{15}\))

B = \(\dfrac{1}{2}\) x (\(\dfrac{1}{1}-\dfrac{1}{15}\))

B = \(\dfrac{1}{2}\) x \(\dfrac{14}{15}\)

B = \(\dfrac{7}{15}\)

13 tháng 3 2022

\(\dfrac{2}{1\times3}+\dfrac{2}{3\times5}+...+\dfrac{2}{99\times101}\\ =1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{101}\\ =1-\dfrac{1}{101}\\ =\dfrac{100}{101}\)

13 tháng 3 2022

= 100/101

2/3x5 + 2/5x7 + 2/7x9 + ......+ 2/97x99 = 1/3 - 1/5 + 1/5 - 1/7 + 1/7 - 1/9 + ... + 1/97 - 1/99 
= 1/3 - 1/99 = 96/3.99 = 32/99 

15 tháng 4 2016

\(\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+...+\frac{2}{97\cdot99}\)

=\(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{97}-\frac{1}{99}\)

=\(\frac{1}{3}-\frac{1}{99}\)

=\(\frac{32}{99}\)