Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Khim=0 thì (1) trở thành \(x^2-2=0\)
hay \(x\in\left\{\sqrt{2};-\sqrt{2}\right\}\)
Khi m=1 thì (1) trở thành \(x^2-2x=0\)
=>x=0 hoặc x=2
b: \(\text{Δ}=\left(-2m\right)^2-4\left(2m-2\right)\)
\(=4m^2-8m+8=4\left(m-1\right)^2>=0\)
Do đó: Phương trình luôn có hai nghiệm
a. Phương trình có 2 nghiệm phân biệt khi:
\(\Delta=\left(2m-1\right)^2-4\left(m^2-1\right)=5-4m>0\)
\(\Rightarrow m< \dfrac{5}{4}\)
b. Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m-1\\x_1x_2=m^2-1\end{matrix}\right.\)
\(\left(x_1-x_2\right)^2=x_1-3x_2\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=x_1-3x_2\)
\(\Leftrightarrow\left(2m-1\right)^2-4\left(m^2-1\right)=x_1-3x_2\)
\(\Leftrightarrow x_1-3x_2=5-4m\)
Kết hợp hệ thức Viet ta được: \(\left\{{}\begin{matrix}x_1+x_2=2m-1\\x_1-3x_2=5-4m\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x_1+x_2=2m-1\\4x_2=6m-6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=\dfrac{m+1}{2}\\x_2=\dfrac{3m-3}{2}\end{matrix}\right.\)
Thế vào \(x_1x_2=m^2-1\)
\(\Rightarrow\left(\dfrac{m+1}{2}\right)\left(\dfrac{3m-3}{2}\right)=m^2-1\)
\(\Leftrightarrow m^2-1=0\Rightarrow m=\pm1\) (thỏa mãn)
a, thay m = 3 vào pt , ta đc
x2 - 2x + 3 = 0
\(\Leftrightarrow\left(x-1\right)^2+2=0\)
Mà (x-1)2 + 2 > 0 \(\forall x\)
=> pt vô nghiệm
b, \(\Delta^'=1-m\)
pt vô nghiệm khi \(\Delta^'< 0=>m>1\)
c, pt có 2 nghiệm pb \(\Leftrightarrow\)\(\Delta^'>0\)=> 1 - m>0 => m < 1
#mã mã#
a: Khi m=-2 thì phương trình trở thành \(x^2+2x-3=0\)
=>(x+3)(x-1)=0
=>x=-3 hoặc x=1
b: \(\text{Δ}=\left(-2\right)^2-4\left(m-1\right)=4-4m+4=-4m+8\)
Để phương trình có hai nghiệm phân biệt thì -4m+8>0
=>-4m>-8
hay m<2
Theo hệ thức Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-2\\x_1x_2=m-1\end{matrix}\right.\)
Theo đề, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-2\\x_1-2x_2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_2=-\dfrac{2}{3}\\x_1=2x_2=-\dfrac{4}{3}\end{matrix}\right.\)
Ta có: \(x_1x_2=m-1\)
\(\Leftrightarrow m-1=\dfrac{8}{9}\)
hay m=17/9(nhận)
a. Thay m=-2 ta được: \(x^2+2x-2-1=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)
b. Để phương trình (*) có 2 nghiệm phân biệt thì \(\Delta=4-4\left(m-1\right)>0\Leftrightarrow1>m-1\Leftrightarrow m< 2\)
Áp dụng định lí Vi-et ta có: \(x_1+x_2=\dfrac{-2}{1}=-2\)
Ta có: \(\left\{{}\begin{matrix}x_1+x_2=-2\\x_1-2x_2=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=-\dfrac{4}{3}\\x_2=\dfrac{-2}{3}\end{matrix}\right.\)\(\Rightarrow x_1.x_2=\dfrac{m-1}{1}=\dfrac{-4}{3}.\dfrac{-2}{3}=m-1\Rightarrow m=\dfrac{17}{9}\)<2
Vậy m=\(\dfrac{17}{9}\)
x^3-4(x+2)=0
x^3-4x+8-8=0
x^3-4x=0
x(x^2-4)=0
=> x=0 va x^2=4
x=0 va x = -2 va 2
vậy phương trình có 3 nghiệm
Bài 1:
a) Thay m=3 vào (1), ta được:
\(x^2-4x+3=0\)
a=1; b=-4; c=3
Vì a+b+c=0 nên phương trình có hai nghiệm phân biệt là:
\(x_1=1;x_2=\dfrac{c}{a}=\dfrac{3}{1}=3\)
Bài 2:
a) Thay m=0 vào (2), ta được:
\(x^2-2x+1=0\)
\(\Leftrightarrow\left(x-1\right)^2=0\)
hay x=1
Thay m=-1 vào pt ta được:
\(x^2+4x-5=0\)\(\Leftrightarrow\left(x-1\right)\left(x+5\right)=0\)\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-5\end{matrix}\right.\)
Có \(ac=-5< 0\) =>Pt luôn có hai nghiệm pb trái dấu
Theo viet có:\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\2x_1-x_2=11\\x_1x_2=-5\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x_1+2x_1-11=2\left(m-1\right)\\x_2=2x_1-11\\x_1x_2=-5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{2m+9}{3}\\x_2=\dfrac{4m-15}{3}\\x_1x_2=-5\end{matrix}\right.\)
\(\Rightarrow\left(\dfrac{2m+9}{3}\right)\left(\dfrac{4m-15}{3}\right)=-5\)\(\Leftrightarrow8m^2+6m-90=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=3\\m=-\dfrac{15}{4}\end{matrix}\right.\)
Vậy...
Lời giải:
a. Để pt có 2 nghiệm phân biệt thì: $\Delta'=(-2)^2-m>0$
$\Leftrightarrow 4-m>0$
$\Leftrightarrow m< 4$
b. Với $m=3$ thì pt trở thành: $x^2-4x+3=0$
$\Leftrightarrow (x-1)(x-3)=0$
$\Leftrightarrow x-1=0$ hoặc $x-3=0$
$\Leftrightarrow x=1$ hoặc $x=3$