Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
casio fx 570 thì ấn mode => 5 => 3 sau điền hệ số a;b;c
casio fx 580 thì ấn mode => 9 => 2 => 2 => điền hệ số a;b;c
có cả cách này à =)))
menu setup -> 9 -> 2 - > 2 (pt cần phân tích) -> nhập hệ số của pt vào từng biến thích hợp -> ''=''
VD : \(A=x^2+4x-5\)có nghiệm \(x_1=1;x_2=-5\)
vậy đa thức cần phân tích là : \(\left(x-1\right)\left(x+5\right)=x^2+5x-x-5\)
Vậy \(A=x^2+4x-5=x^2+5x-x-5=\left(x-1\right)\left(x+5\right)\)
tương tự nhé
a) 2x(x+3) – 3x2(x+2) + x(3x2 + 4x – 6)
= (2x . x + 2x . 3) – (3x2 . x + 3x2 . 2) + (x . 3x2 + x . 4x – x . 6)
= 2x2 + 6x – (3x3 + 6x2) + (3x3 + 4x2 - 6x)
= 2x2 + 6x – 3x3 – 6x2 + 3x3 + 4x2 - 6x
= (– 3x3 + 3x3 ) + (2x2 - 6x2 + 4x2 ) + (6x – 6x)
= 0 + 0 + 0
= 0
b) 3x(2x2 – x) – 2x2(3x+1) + 5(x2 – 1)
= [3x . 2x2 + 3x . (-x)] – (2x2 . 3x + 2x2 . 1) + [5x2 + 5 . (-1)]
= 6x3 – 3x2 – (6x3 +2x2) + 5x2 – 5
= 6x3 – 3x2 – 6x3 - 2x2 + 5x2 – 5
= (6x3 – 6x3 ) + (-3x2 – 2x2 + 5x2) – 5
= 0 + 0 – 5
= - 5
Dễ
Thế
Mà
Cũnhoir
Dc
Ạ
Chịu
Chắc
Phải
Ngu
Lamqs
Mới
Hỏi
Câu
Này
b. Ta có:
A(x) + B(x) = x2 + 2x + 1 + x2 + 1 = 2x2 + 2x + 2 (0.5 điểm)
A(x) - B(x) = x2 + 2x + 1 - (x2 + 1) = 2x (0.5 điểm)
P - Q + R =(2x2 - 3xy + 4y2) - (3x2 + 4xy -y2) + (x2 +2xy +3y2)
= 2x2 - 3xy + 4y2 - 3x2 - 4xy + y2 + x2 + 2xy + 3y2
=(2x2 - 3x2 + x2) + ( -3xy - 4xy +2xy) + (4y2 + y2 +3y2)
= -5xy + 8y2
Vậy P - Q + R = - 5xy + 8y2
Bài 5:
\(P-Q+R=\) \(\left(2x^2-3xy+4y^2\right)-\left(3x^2+4xy-y^2\right)+\left(x^2+xy+3y^2\right)\)
\(P-Q+R=\) \(2x^2-3xy+4y^2-3x^2-4xy+y^2+x^2+xy+3y^2\)
\(P-Q-R=\) \(\left(2x^2-3x^2+x^2\right)+\left(-3xy-4xy+2xy\right)+\left(4y^2+y^2+2y^2\right)\)
\(P-Q-R=\) \(0-5xy+7y^2\)
Vậy \(P-Q-R=\) \(-5xy+7y^2\)
Đặt x/3=y/4=z/5=k
=>x=3k; y=4k; z=5k
2x^2-3y^2+4z^2=280
=>2*9k^2-3*16k^2+4*25k^2=280
=>k^2=4
TH1: k=2
=>x=6; y=8; z=10
TH2: k=-2
=>x=-6; y=-8; z=-10
a. Ta có: A(x) = x5 + x2 + 5x + 6 - x5 - 3x - 5
= x2 + 2x + 1 (0.5 điểm)
B(x) = x4 + 2x2 - 3x - 3 - x4 - x2 + 3x + 4 = x2 + 1 (0.5 điểm)
$\frac{3}{2}\times \frac{2}{3}=1$
$4-\frac{5}{6}=\frac{19}{6}\neq 1$
Do đó nhận định trong bài là không đúng. Bạn xem lại.