Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ngoài cách này ra nha
Dãy số 10,102,103,...1020 có tất cả 20 số. Có 20 số khác nhau mà chỉ có 19 số dư trong phép chia cho 19, do đó tồn tại hai số cùng số dư trong phéo chia cho 19.
Gọi 2 số đó là 10m và 10n. $$
Như vậy 10m - 10n chia hết cho 19 hay 10n.(10m-n-1) chia hết cho 19
Vì ƯCLN(10n;19)=1 nên 10m-n-1 chia hết cho 19 hay 10m-n chia 19 dư 1
Rõ ràng 10m-n là 1 số thuộc dãy số trên bởi 1> hoặc = n
A=4+42+43+..+424
A=(4+42+43)+..+424
A=84+..+424 MÀ 84 CHIA HẾT CHO 21
=> A CHIA HẾT CHO 21
A = 4 + 42 + 43 + ... + 423 + 424
A = ( 4 + 42 + 43 ) + ( 44 + 45 + 46 ) + ( 47 + 48 + 49 ) + ... + ( 422 + 423 + 424 )
A = ( 4 + 42 + 43 ) x1 + ( 4 + 42 + 43 ) x 43 + ( 4 + 42 + 43 ) x 46 + ... + ( 4 + 42 + 43 ) x 421
A = 84 x 1 + 84 x 43 + 84 x 46 + ... + 84 x 421
A = 84 x ( 1 + 43 + ... + 421 )
A = 21 x 4 x (...) \(⋮\)21
Vậy A chia hết cho 21 ( đpcm ) .
A = ( 4 + 42 + 43 + 44 + 45 +46 ) + ( 47 + 48 + 49 + 410 + 411 + 412 ) + ... + ( 419 + 420 + 421 + 422 + 423 + 424 )
A = ( 4 + 42 + 43 + 44 + 45 + 46 ) x 1 + ( 4 + 42 + 43 + 44 + 45 +46 ) x 46 + ... + ( 4 + 42 + 43 + 44 + 45 + 46 ) x 418
A = 22364160 x 1 + 22364160 x 46 + ... + 223644160 x 418
A = 22364160 x ( 1 + 46 + ... + 418 )
A = 420 x 53248 x ( ... ) \(⋮\)420
Vậy A chia hết cho 420 ( đpcm ) .
2\(^4\). 2\(^4\). 2\(^3\)= 2\(^{4+4+3}\)
= 2\(^{11}\).
Chúc bạn học tốt !
Dễ thấy \(2^x=y^2-153\)có Vế phải luôn nguyên nên \(2^x\in Z\Rightarrow x\in N\)
\(2^x+12^2=y^2-3^2\Leftrightarrow2^x+153=y^2.\)(1)
Nếu x là số lẻ , khi đó \(2^x+153\)chia 3 dư 2 ( Vì 153 chia hết cho 3 ,và \(2^x\)với x là lẻ thì luôn chia 3 dư 2)
\(y^2\)chia cho 3 dư 0 hoặc dư 1 (cái này là theo tính chất chia hết của số chính phương)
Như vậy 2 vế của (1) mâu thuẫn => x không thể là số lẻ. Vậy x là số chẵn.
Đặt \(x=2k\left(k\in N\right)\), ta có:
\(2^{2k}+153=y^2\Leftrightarrow y^2-\left(2^k\right)^2=153\)
\(\Leftrightarrow\left(y-2^k\right)\left(y+2^k\right)=153.\)
Nhận thấy \(y-2^k\le y+2^k\left(dok\in N\right)\)và \(y-2^k;y+2^k\)đều là các số nguyên
Mà 153=9.17=(-17).(-9)=3.51=(-51).(-3)=1.153=(-153).(-1) suy ra xảy ra 6 trường hợp:
\(\hept{\begin{cases}y-2^k=9\\y+2^k=17\end{cases}\Leftrightarrow\hept{\begin{cases}y=13\\2^k=4\end{cases}\Leftrightarrow.}\hept{\begin{cases}k=2\\y=13\end{cases}\Leftrightarrow}\hept{\begin{cases}x=4\\y=13\end{cases}\left(tm\right).}}\)
\(\hept{\begin{cases}y-2^k=-17\\y+2^k=-9\end{cases}\Leftrightarrow}\hept{\begin{cases}y=-13\\2^k=4\end{cases}\Leftrightarrow}\hept{\begin{cases}k=2\\y=-13\end{cases}\Leftrightarrow\hept{\begin{cases}x=4\\y=-13\end{cases}}\left(tm\right).}\)
\(\hept{\begin{cases}y-2^k=3\\y+2^k=51\end{cases}\Leftrightarrow\hept{\begin{cases}y=27\\2^k=24\end{cases}}}\)(vì không có k nguyên nào để \(2^k=24\)) => loại
\(\hept{\begin{cases}y-2^k=-51\\y+2^k=-3\end{cases}}\Leftrightarrow\hept{\begin{cases}y=-27\\2^k=24\end{cases}\left(loại\right).}\)
\(\hept{\begin{cases}y-2^k=-153\\y+2^k=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}y=-77\\2^k=76\end{cases}}\)(vì không có k nguyên nào để \(2^k=76\)) => loại
\(\hept{\begin{cases}y-2^k=1\\y+2^k=153\end{cases}\Leftrightarrow}\hept{\begin{cases}y=77\\2^k=76\end{cases}\left(loại\right)}\)
Vậy các nghiệm nguyên của phương trình đã cho là \(\left(x,y\right)=\left(4;13\right),\left(4;-13\right).\)
=3[(20-64:16)8+52]-157
=3[(20-4)8+52]-157
=3[16.8+52]-157
=3[128+52]-157
=3.180-157
=540-157
=383
đâu ko phải toán lớp 1