Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+..........+\frac{1}{19.20}-\frac{x}{40}=\frac{3}{-10}\)
\(\Rightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-........-\frac{1}{20}-\frac{x}{40}=\frac{-3}{10}\)
\(\Rightarrow1-\frac{1}{20}-\frac{x}{40}=\frac{-3}{10}\)
\(\Rightarrow\frac{40}{40}-\frac{2}{40}-\frac{x}{40}=\frac{-12}{40}\)
\(\Rightarrow\frac{38}{40}-\frac{x}{40}=\frac{-12}{40}\)
\(\Rightarrow\frac{x}{40}=\frac{38}{40}-\frac{-12}{40}\)
\(\Rightarrow\frac{x}{40}=\frac{38}{40}+\frac{12}{40}\)
\(\Rightarrow\frac{x}{40}=\frac{50}{40}\)
\(\Rightarrow x=50\)
Vậy x = 50
\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+..+\frac{1}{19\cdot20}-\frac{x}{40}=\frac{-3}{10}\)\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+..+\frac{1}{19}-\frac{1}{20}-\frac{x}{40}=\frac{3}{-10}\)
\(1-\frac{1}{20}-\frac{x}{40}=\frac{3}{-10}\)
\(\frac{x}{40}=1-\frac{1}{20}-\frac{3}{-10}=1\frac{1}{4}=\frac{5}{4}\)
\(\frac{x}{40}=\frac{5}{4}\Rightarrow x=\frac{40\cdot5}{4}=50\)
\(\frac{3}{1.2}+\frac{3}{2.3}+\frac{3}{3.4}+...+\frac{3}{19.20}\)
\(=3.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{19.20}\right)\)
\(=3.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{19}-\frac{1}{20}\right)\)
\(=3.\left(1-\frac{1}{20}\right)\)
\(=3.\frac{19}{20}=\frac{57}{20}\)
Ủng hộ mk nha !!! ^_^
Tìm x
a,\(\frac{5}{4}x=\frac{2}{3}-1,5=\frac{2}{3}-\frac{3}{2}=\frac{4}{6}-\frac{9}{6}=\frac{-5}{6}\)
\(x=\frac{-5}{6}:\frac{5}{4}=\frac{-5}{6}.\frac{4}{5}=\frac{5.\left(-1\right).2.2}{2.3.5}=\frac{-2}{3}\)
b, \(\frac{2}{7}x-\frac{3}{2}x=\frac{-21}{4}.\frac{2}{7}=\frac{-3}{2}\)
\(x.\left(\frac{2}{7}-\frac{3}{2}\right)=\frac{-3}{2}\)
\(x.\frac{-17}{14}=\frac{-3}{2}\)
\(x=\frac{-3}{2}:\frac{-17}{14}=\frac{-3}{2}.\frac{14}{-17}=\frac{21}{17}\)
câu a phải là như z ms làm được bn ơi
A = 31.3+33.5+...+319.2031.3+13.5+...+319.20
đặt \(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{18.19.20}\)
\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}\right)+\frac{1}{2}\left(\frac{1}{2.3}-\frac{1}{3.4}\right)+...+\frac{1}{2}\left(\frac{1}{18.19}-\frac{1}{19.20}\right)\)
\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{18.19}-\frac{1}{19.20}\right)\)
\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{380}\right)=\frac{189}{760}\)
Đặt \(B=\frac{3}{1.2}+\frac{3}{2.3}+...+\frac{3}{19.20}=\frac{3}{1}-\frac{3}{2}+\frac{3}{2}-\frac{3}{3}+...+\frac{3}{19}-\frac{3}{20}\)
\(=3-\frac{3}{20}=\frac{57}{20}\)
\(D=A-B=\frac{189}{760}-\frac{57}{20}=-\frac{1977}{760}\)
Gọi \(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{18.19.20}\)là A
\(\frac{3}{1.2}-\frac{3}{2.3}-...-\frac{3}{19.20}\)là B
\(A=\left[\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}\right)+\frac{1}{2}.\left(\frac{1}{2.3}-\frac{1}{3.4}\right)+...+\frac{1}{2}.\left(\frac{1}{18.19}-\frac{1}{19.20}\right)\right]\)
\(A=\left[\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{18.19}-\frac{1}{19.20}\right)\right]\)
\(A=\left[\frac{1}{2}.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{19}-\frac{1}{20}\right)\right]\)
\(A=\left[\frac{1}{2}.\left(1-\frac{1}{20}\right)\right]\)
\(A=\frac{1}{2}.\frac{19}{20}\)
\(A=\frac{19}{40}\)
\(B=\frac{3}{1.2}-\frac{3}{2.3}-...-\frac{3}{19.20}\)
\(B=\left(\frac{3}{1.2}+\frac{3}{2.3}+...+\frac{3}{19.20}\right)\)
\(B=\left[3.\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{19.20}\right)\right]\)
\(B=\left[3.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{2}{3}+...+\frac{1}{19}-\frac{1}{20}\right)\right]\)
\(B=\left[3.\left(\frac{19}{20}\right)\right]\)
\(B=\frac{57}{20}\)
Vậy A - B = \(\frac{19}{40}-\frac{57}{20}\)
\(=-\frac{95}{40}=-\frac{19}{8}\)
Nếu đúng thì k nha
a) Ta có công thức tính tổng các số tự nhiên liên tiếp sau:
\(\Rightarrow1275=\frac{\left(1+n\right)n}{2}\Rightarrow\left(1+n\right)n=1275.2=2550=50.51\)
Mà n là số tự nhiên => n và n+1 là 2 số tự nhiên liên tiếp => n=50.
b) Đề chưa đầy đủ.
c) Ta có:
\(A=1.2+2.3+3.4+.....+19.20\)
\(\Rightarrow3A=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+19.20.\left(21-18\right)\)
\(=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+.....+19.20.21-18.19.20\)
\(=\left(1.2.3+2.3.4+3.4.5+......+19.20.21\right)-\left(1.2.3+2.3.4+......+18.19.20\right)=19.20.21\)
\(\Rightarrow A=19.20.7=2660=133.2.10\Rightarrow\frac{A}{133.2}=\frac{2.133.10}{2.133}=10\)
cảm ơn bạn, mà đề chỉ là nếu có thôi chứ câu b đủ rồi á bạn
\(\frac{\left(3^{19}.7+3^{19}.20\right)}{3^{10}}=\frac{3^{19}.3^3}{3^{10}}=\frac{3^{22}}{3^{10}}=3^{12}\)
P/S: nhấn vào câu hỏi tương tự cx đc đó bn
\(\left(3^{19}.7+3^{19}.20\right).3^{10}\)
\(=\left[3^{19}.\left(7+20\right)\right].3^{10}\)
\(=\left[3^{19}.27\right].3^{10}\)
\(=\left[3^{19}.3^3\right].3^{10}\)
\(=3^{22}.3^{10}\)
\(=3^{32}\)