Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(=\frac{\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)}{2}\)
\(=\frac{\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)}{2}\)
\(=\frac{\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)}{2}\)
\(=\frac{\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)}{2}\)
\(=\frac{\left(3^{16}-1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)}{2}\)
\(=\frac{\left(3^{32}-1\right)\left(3^{32}+1\right)}{2}\)
\(=\frac{3^{64}-1}{2}\)
đặt A= \(\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
=\(\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right).\frac{3-1}{2}\)
=\(\frac{3^{64}-1}{2}\)
áp dugj hằng đẳng thức thứ 3
Giải:
1) B = 272 - 252 = (27 - 25)(27 + 25) = 20.52
Suy ra A<B, vì 202<20.52
2) D = 20032 - 1 = 20032 - 12 = (2003 - 1)(2003 + 1) = 2002.2004
Suy ra C = D.
3) Nhân (2-1) vào E, ta đươc: E = (2-1)(2+1)(22+1)(24+1)(28+1)(216+1)
Áp dụng lân lượt hằng đẳng thức số 3 (Hiệu hai bình phương) vào E, ta được kế quả:
E = 232-1
Suy ra E<F
4) Nhân (3-1) vào G, ta đươc: 2G = (3-1)(3+1)(32+1)(34+1)(38+1)(316+1)
Áp dụng lân lượt hằng đẳng thức số 3 (Hiệu hai bình phương) vào G, ta được kế quả:
2G = 332-1
Suy ra G = (332-1)/2
Mà (332-1)/2 < 332/2
Suy ra G<H
5)
Nhân 2 vào I, ta đươc: 2I = 2.12(52+1)(54+1)(58+1)...(532+1)
Áp dụng lân lượt hằng đẳng thức số 3 (Hiệu hai bình phương) vào I, ta được kế quả:
2I = 564-1
Suy ra I = (564-1)/2
Mà (564-1)/2 < 564-1
Suy ra I<K.
Chúc chị học tốt!
\(\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(=\frac{1}{2}\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(=\frac{1}{2}\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(=\frac{1}{2}\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(=\frac{1}{2}\left(3^{16}-1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(=\frac{1}{2}\left(3^{32}-1\right)\left(3^{32}+1\right)\)
\(=\frac{1}{2}\left(3^{64}-1\right)\)
A=\(\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{16}+1\right)\)
\(=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(=\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)=\left(3^{16}-1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(=\left(3^{32}-1\right)\left(3^{32}+1\right)=3^{64}-1\)