K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 10 2016

câu 1
Tổng của số nào đó phải có các số hạng trong tổng đó chia hết cho 3 bằng tính chất chia hết đó là các chữ số trong số hạng cộng và chia hết cho 3 thì tổng đó chia hết cho 3
VD : 6+9
6:3,9:3=[6+9]:3
Câu 2

98576
Tổng các chữ số trong số :
9+8+5+7+6=35
35 không chia hết cho 3 vậy số này không chia hết cho  3
MÌNH NHANH NHẤT NÈ 
NHỚ K NHA

3 tháng 10 2016

Câu 1 : Tổng các số chia hết cho 3 thì số đó chia hết cho 3

Câu 2 : 98576 là số không chia hết cho 3 vì tổng các chữ số của số này là 35

22 tháng 7 2018

Bài 4 :

Gọi các số đó là a,a+1,a+2,a+3.......,a+45

Ta có 

a+(a+1)+(a+2)+(a+3)+..........+(a+45)

46a+ (1+2+3+4+5+.........+45)

46a+1035

Ta thấy 46a chia hết cho 46 , 1035 không chia hết cho 46 

=> 46a +1035 không chia hết cho 46

Vậy 46 số tự nhiên liên tiếp không chia hết cho 46 

22 tháng 7 2018

Nếu n chia 5 dư 1, 3 thì n^2 chia 5 dư 1

=> n^2 + 4 chia hết cho 5

Nếu n chia 5 dư 2,4 thì n^2 chia 5 dư 4

=> n^2 + 1 chia hết cho 5

Nếu n chia hết cho 5

=> A chia hết cho 5

24 tháng 1 2021

B = a3 + b3 + c3 - ( a + b + c )

= a3 + b3 + c3 - a - b - c

= ( a3 - a ) + ( b3 - b ) + ( c3 - c )

= a( a2 - 1 ) + b( b2 - 1 ) + c( c2 - 1 ) 

= ( a - 1 )a( a + 1 ) + ( b - 1 )b( b + 1 ) + ( c - 1 )c( c + 1 )

Vì ( a - 1 ) ; a ; ( a + 1 ) là ba số nguyên liên tiếp

=> sẽ có 1 số ⋮ 2 và 1 số ⋮ 3

mà (2;3) = 6 => ( a - 1 )a( a + 1 ) ⋮ 6

CMTT ta có được ( b - 1 )b( b + 1 ) ⋮ 6 và ( c - 1 )c( c + 1 ) ⋮ 6

=> ( a - 1 )a( a + 1 ) + ( b - 1 )b( b + 1 ) + ( c - 1 )c( c + 1 ) ⋮ 6

hay B = a3 + b3 + c3 - ( a + b + c ) ⋮ 6

24 tháng 1 2021

\(B=a^3+b^3+c^3-\left(a+b+c\right)\)

\(=a^3+b^3+c^3-a-b-c\)

\(=\left(a^3-a\right)+\left(b^3-b\right)+\left(c^3-c\right)\)

\(=a\left(a^2-1\right)+b\left(b^2-1\right)+c\left(c^2-1\right)\)

\(=a\left(a-1\right)\left(a+1\right)+b\left(b-1\right)\left(b+1\right)+c\left(c-1\right)\left(c+1\right)\)

Vì \(a\)\(a-1\)\(a+1\)là 3 số nguyên liên tiếp 

\(\Rightarrow a\left(a-1\right)\left(a+1\right)⋮2\)và \(a\left(a-1\right)\left(a+1\right)⋮3\)

mà \(\left(2;3\right)=1\)\(\Rightarrow a\left(a-1\right)\left(a+1\right)⋮6\)

Chứng minh tương tự: \(b\left(b-1\right)\left(b+1\right)⋮6\)\(c\left(c-1\right)\left(c+1\right)⋮6\)

\(\Rightarrow B=a\left(a-1\right)\left(a+1\right)+b\left(b-1\right)\left(b+1\right)+c\left(c-1\right)\left(c+1\right)⋮6\)

\(\Rightarrow B⋮6\)( đpcm )

16 tháng 7 2015

S=(1+3)+(3^2+3^3)+...+(3^99+3^100)

 =  4+3^2.(1+3)+...+3^99.(1+3)

= 4 + 3^2.4+..+3^99.4

= 4.(1+3^2+...+3^99) chia hết cho 4

S=(1+3+3^2)+...+(3^98+3^99+3^100)

 =  13+ ...+3^98.(1+3+3^2)

 = 13+...+3^98.13

 = 13.(1+...+3^98) chia hết cho 13

15 tháng 7 2017

a/ Ta có tổng của các chữ số của a là 52 mà 52 không chia hết cho 3 nên a không chia hết cho 3

Ta có tổng của các chữ số của b là 104 mà 104 không chia hết cho 3 nên a không chia hết cho 3

Vậy a.b không chia hết cho 3.

b/ Ta có tổng của các chữ số trong a là 31 nên a chia cho 3 dư 1.

Tổng của các chữ số trong b là 38 nên b chia 3 dư 2 

\(\Rightarrow a.b\)chia cho 3 dư 1.2 = 2.

Vậy (a.b - 2) chia cho 3 thì dư (2 - 2) = 0. Hay (a.b - 2) chia hết cho 3

15 tháng 7 2017

Câu 1: a

tổng các chữ số của a=52 ( vì a gồm 52 số 1) 

tg tự tổng các chữ số của b=104 

1 số đc gọi là chia hết cho 3 khi tổng các chữ số của nó phải chia hết cho 3 

Vì vậy a=52 mà 5+2=7 ; 7 không chia hết cho 3 =>a k chia hết cho 3 

b=104 mà 1+0+4=5; 5 cũg k chia hết cho 3=>b k chia hết cho 3 

tích của a.b là tích của 2 số k chia hết cho 3 nên k chia hết cho 3 

b.

Do a gồm 31 chữ số 1 nên tổng các chữ số của a là 31 . 1 = 31 chia 3 dư 1

Do b gồm 38 chữ số 1 nên tổng các chữ số của b là 38 . 1 = 38 chia 3 dư 2

Vì 1 số và tổng các chữ số của nó có cùng số dư trong phép chia cho 3 => a chia 3 dư 1, b chia 3 dư 2

=> ab chia 3 dư 2

Mà 2 chia 3 dư 2

=> ab -2 chia hết cho 3

Vậy: ab - 2 chia hết cho 3 (đcpcm)