Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔCDB có
CA là trung tuyến
CG=2/3CA
=>G là trọng tâm
=>E là trung điểm của BC
b: Xét tứ giác DFCE có
DF//CE
DE//CF
=>DFCE là hình bình hành
=>DC cắt FE tại trung điểm của mỗi đường
=>M là trung điểm của BC và EF
c: G là trọng tâm của ΔDBC
M là trung điểm của DC
=>B,G,M thẳng hàng
Bài 1:
a)+ Vì AB = ACNÊN
==>Tam giác ABC cân tại A
==>góc ABI = góc ACI
+ Xét tam giác ABI và tam giác ACI có:
AI là cạch chung
AB = AC(gt)
BI = IC ( I là trung điểm của BC)
Vậy tam giác ABI = tam giác ACI (c.c.c)
==> góc BAI = góc CAI ( 2 góc tương ứng )
==>AI là tia phân giác của góc BAC
b)
Xét tam giác BAM và tam giác BAN có:
AB = AC (gt)
góc B = góc C (cmt)
BM = CN ( gt )
Vậy tam giác BAM = tam giác CAN (c.g.c)
==> AM = AN (2 cạnh tương ứng)
c)
vì tam giác BAI = tam giác CAI (cmt)
==>góc AIB = góc AIC (2 góc tương ứng)
Mà góc AIB+ góc AIC = 180độ ( kề bù)
nên AIB=AIC=180:2=90
==>AI vuông góc với BC
Tính độ dài các cạnh góc vuông của một tam giác vuông cân có cạnh huyền bằng:
a) 2cm
b)\(\sqrt{2cm}\)
A B C n y bàn à Ay trùng với An nha cho mik nếu đúng