Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(A=100^2+200^2+300^2+...+5000^2\)
\(\Rightarrow A=\left(1.100\right)^2+\left(2.100\right)^2+\left(3.100\right)^2+...+\left(50.100\right)^2\)
\(\Rightarrow A=1^2.100^2+2^2.100^2+3^2.100^2+...+50^2.100^2\)
\(\Rightarrow A=\left(1^2+2^2+3^2+...+50^2\right).100^2\)
\(\Rightarrow A=42925.100^2\)
\(\Rightarrow A=429250000\)
Vậy A = 429250000
(1000 - 13) x (1000 - 23) x (1000 - 33) x ... x (1000 - 103) x ... x (1000 - 503)
= (1000 - 13) x (1000 - 23) x (1000 - 33) x ... x (1000 - 1000) x ... x (1000 - 503)
= (1000 - 13) x (1000 - 23) x (1000 - 33) x ... x 0 x ... x (1000 - 503)
= 0
Trong các thừa số có thừa số co 1 thua so la:
1000 - 10^3 = 1000 - 1000 =0
Nên kết quả sẽ là 0
S = 100^2+200^2+300^2+.....+1000^2
S=100^2+(100.2)^2+(100.3)^2+....+(100....
S = 100^2(1^2+2^2+3^2+...+10^2)
S=100^2.385
S=3850000
A=1002+2002+3002+...+10002=(100*1)2+(100*2)2+(100*3)2+...+(100*10)2
=1002*12+1002*22+...+1002*102
=1002(12+22+...+102)=10 000*385=3 850 000
\(A=100^2+200^2+300^2+...+1000^2\)
\(A=\left(100\cdot1\right)^2+\left(100\cdot2\right)^2+\left(100\cdot3\right)^2+...+\left(100\cdot10\right)^2\)
\(A=100^2\cdot1^2+100^2\cdot2^2+100^2\cdot3^2+...+100^2\cdot10^2\)
\(A=100^2\left(1^2+2^2+3^2+...+10^2\right)\)
\(A=10000\cdot385\)
\(A=3850000\)
Cách này có j sai các bạn bảo nhé
12+22+32+...+102=385
=>1+4+9+...+100=385
mà A=1002+2002+3002+...+10002
=10000+40000+90000+...+1000000
==>(10000+40000+90000+...+1000000) : (1+4+9+...+100)
=10000
==>A=10000 *385
A=3850000
Nhận thấy :
1002 = 12.10000
2002 = 22.10000
....
10002 = 102.10000
=> 1002 + 2002 + ... + 10002 = (12 + 22 + ... + 102).10000 = 385.10000 = 3 850 000
Vậy A = 3 850 000
2000
k nha
bằng 2000