K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 2 2022

pugr3y9t74598t6y45ytu8549y0t9⅚⅗⅔⅔⅔¾⅓ⁿ⅔⅛⅜⅘⅕⨖⨘⨍⨍⨇⨈⨍⨇⨊⨆⨒⨁⨀⨂⁾⁾™℗®®℉℃‶″⁄⁑⁂⁂?‰‱‱%º⁓µµ±♪♪⁜

30 tháng 6 2016

Bài giải:

Từ đề bài ta suy ra trong 30 người có đúng 15 cặp Hiệp sĩ – Kẻ lừa dối là bạn của nhau. Ta có thể dễ dàng đoán được đáp số của bài toán bằng cách “giả định” 15 người ở vị trí lẻ đều là Hiệp sĩ. Khi đó, dĩ nhiên bạn của họ đều ngồi cạnh họ ở các vị trí chẵn và đều là Kẻ lừa dối, do đó không có ai nói “Đúng”. Đáp số là 0.

Tuy nhiên, đó chỉ là dự đoán đáp số chứ không phải lời giải. Với cách hỏi ở đề bài, ta biết đáp số là 0. Nhưng để khẳng định điều này, ta phải chứng minh chứ không chỉ là đưa ra một ví dụ như vậy.

Nếu chúng ta sa đà vào việc xét vị trí ngồi của 30 người (ai là hiệp sĩ, ai là kẻ nối dối) thì sẽ rất rối vì có nhiều trường hợp xảy ra. Bí quyết của lời giải là ở nhận xét quan trọng sau: Trong 2 người là bạn của nhau, chỉ có đúng 1 người nói “Đúng” cho câu hỏi "Có phải bạn của anh đang ngồi cạnh anh không?".

Thật vậy, nếu có hai người, 1 hiệp sĩ, 1 kẻ lừa dối là bạn của nhau. Xét 2 trường hợp: 

1) Nếu họ ngồi cạnh nhau thì Hiệp sĩ sẽ nói đúng, còn Kẻ lừa dối nói “Không”. 

2) Nếu họ không ngồi cạnh nhau thì Hiệp sĩ nói “Không”, còn Kẻ lừa dối nói “Đúng”. 

Như vậy, vì ta có 15 cặp bạn nên ta có đúng 15 câu trả lời “Đúng”. Vì cả 15 người ở vị trí lẻ đã nói “Đúng” nên tất cả những người ở vị trí chẵn đều nói “Không”. Tức là đáp số bằng 0.

Chú ý rằng ta không biết được trong 15 người ở vị trí lẻ có bao nhiêu người là Hiệp sĩ, có bao nhiêu người là Kẻ lừa dối và họ xếp ở những vị trí nào.

25 tháng 3 2016

Ví dụ 15 người ngồi ở số ghế lẻ là hiệp sĩ.

Vậy 15 người ngồi ở ghế trái sẽ là kẻ nói dối

Nếu 2 người bạn ngồi cạnh nhau trên 1 cặp bạn bè thì 15 hiệp sĩ sẽ trả lời: "Đúng"

Còn 15 kẻ nối dối sẽ trả lời: "Sai"

Vậy số người ngồi ghế chẵn trả lời đúng là 0

Ông đi qua bà đi lại ai đồng tình thì cho tui 1 tích nha

25 tháng 3 2016

0 de om 

Bài toán về hiệp sĩ và kẻ nói dối, NgaNgười Nga chuộng các bài toán về hiệp sĩ. Ảnh minh họa: Genius.Những bài toán về hiệp sĩ rất được yêu thích ở Nga. Trong một kỳ thi Olympic của học sinh lớp 9, họ đưa ra đề bài khá thú vị.30 người ngồi quanh một bàn tròn 30 chiếc ghế đánh số theo thứ tự từ 1 đến 10. Một số trong họ là hiệp sĩ, một số là kẻ lừa dối. Hiệp sĩ luôn nói...
Đọc tiếp

Bài toán về hiệp sĩ và kẻ nói dối, Nga

Người Nga chuộng các bài toán về Hiệp sĩ. Ảnh minh họa: Genius
Người Nga chuộng các bài toán về hiệp sĩ. Ảnh minh họa: Genius.

Những bài toán về hiệp sĩ rất được yêu thích ở Nga. Trong một kỳ thi Olympic của học sinh lớp 9, họ đưa ra đề bài khá thú vị.

30 người ngồi quanh một bàn tròn 30 chiếc ghế đánh số theo thứ tự từ 1 đến 10. Một số trong họ là hiệp sĩ, một số là kẻ lừa dối. Hiệp sĩ luôn nói thật còn kẻ lừa dối nói dối. Mỗi người có đúng một người bạn trong số những người khác. Hơn nữa, bạn của hiệp sĩ là kẻ lừa dối và bạn của kẻ lừa dối là hiệp sĩ. Mỗi người đều được hỏi: "Có phải bạn của anh đang ngồi cạnh anh không?". 15 người ngồi ở vị trí lẻ trả lời: "Đúng".

Tìm số người ngồi ở vị trí chẵn cũng trả lời: "Đúng".

6
26 tháng 9 2017

 

30 người ngồi quanh một bàn tròn 30 chiếc ghế đánh số theo thứ tự từ 1 đến 10.

không có ghế số 15 đâu nhé bạn 

Từ đề bài ta suy ra trong 30 người có đúng 15 cặp hiệp sĩ – kẻ lừa dối là bạn của nhau. Ta có thể dễ dàng đoán được đáp số của bài toán bằng cách “giả định” 15 người ở vị trí lẻ đều là hiệp sĩ. Khi đó, dĩ nhiên bạn của họ đều ngồi cạnh ở các vị trí chẵn và đều là kẻ lừa dối, do đó không có ai nói “Đúng”. Đáp số là 0.

Tuy nhiên, đó chỉ là dự đoán đáp số chứ không phải lời giải. Với cách hỏi ở đề bài, ta biết đáp số là 0. Nhưng để khẳng định điều này, ta phải chứng minh chứ không chỉ là đưa ra một ví dụ như vậy.

Nếu chúng ta sa đà vào việc xét vị trí ngồi của 30 người (ai là hiệp sĩ, ai là kẻ nối dối) thì sẽ rất rối vì có nhiều trường hợp xảy ra. Bí quyết của lời giải là ở nhận xét quan trọng sau: Trong 2 người là bạn của nhau, chỉ có đúng 1 người nói “Đúng” cho câu hỏi "Có phải bạn của anh đang ngồi cạnh anh không?".

Thật vậy, nếu có hai người, 1 hiệp sĩ, 1 kẻ lừa dối là bạn của nhau. Xét 2 trường hợp: 

1) Nếu họ ngồi cạnh nhau thì hiệp sĩ sẽ nói đúng, còn kẻ lừa dối nói “Không”. 

2) Nếu họ không ngồi cạnh nhau thì hiệp sĩ nói “Không”, còn kẻ lừa dối nói “Đúng”. 

Như vậy, vì ta có 15 cặp bạn nên ta có đúng 15 câu trả lời “Đúng”. Vì cả 15 người ở vị trí lẻ đã nói “Đúng” nên tất cả những người ở vị trí chẵn đều nói “Không”. Tức là đáp số bằng 0.

Chú ý rằng ta không biết được trong 15 người ở vị trí lẻ có bao nhiêu người là hiệp sĩ, có bao nhiêu người là kẻ lừa dối và họ xếp ở những vị trí nào.

30 tháng 5 2017

Bạn nên hỏi và người gác cửa:"Nếu tôi muốn tự do,anh kia sẽ nói cánh cửa nào tôi nên đi qua?".Ví dụ,cánh cửa số 1 dẫn đến tự do,chắc chắn cả hai sẽ nói bạn là cánh cửa số 2!

Nếu ai thấy đúng thì k mình nhé!Ai k mình,mình k lại!

30 tháng 5 2017

nếu tôi muốn tự do, anh kia sẽ nói cánh cửa nào tôi nên đi qua

k mình nhé mình nhanh nhất

15 tháng 2 2016

TH 1 : Nếu A nói thật => C và E nói thật và B, D nói dối. Vậy có 3 người nói thật : A,C,E

                                                                                             2 người nói dối  : B, D 

TH 2 : Nếu A nói dối => C và E nói dối và B, D nói thật . Vậy có 2 người nót thật : B, D

                                                                                             3 người nói dối : A,C,E