Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3 Tìm giá trị lớn nhất của biểu thức :
a) A=-2x^2+5x-8 ; B=3-x^2+4x ; C=-2x^2+3x+1 ; D=-5x^2-4x-19/5
\(a.A=-2x^2+5x-8=-2\left(x^2-2.\dfrac{5}{4}x+\dfrac{25}{16}\right)-\dfrac{39}{8}=-2\left(x-\dfrac{5}{4}\right)^2-\dfrac{39}{8}\text{≤}-\dfrac{39}{8}\) ⇒ \(A_{Max}=-\dfrac{39}{8}."="\) ⇔ \(x=\dfrac{5}{4}\)
\(b.B=3-x^2+4x=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\) ≤ 7
⇒ \(B_{Max}=7."="\) ⇔ \(x=2\)
\(c.C=-2x^2+3x+1=-2\left(x^2-2.\dfrac{3}{4}x+\dfrac{9}{16}\right)+\dfrac{17}{8}=-2\left(x-\dfrac{3}{4}\right)^2+\dfrac{17}{8}\text{≤}\dfrac{17}{8}\)
⇒ \(C_{Max}=\dfrac{17}{8}."="\)⇔ \(x=\dfrac{3}{4}\)
\(d.D=-5x^2-4x-\dfrac{19}{5}=-5\left(x^2+2.\dfrac{2}{5}x+\dfrac{4}{25}\right)-3=-5\left(x+\dfrac{2}{5}\right)^2-3\text{≤}-3\)⇒ \(D_{Max}=-3."="\) ⇔ \(x=-\dfrac{2}{5}\)
Giải như sau.
(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y
⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn !
\(\left(x+6\right)\left(2x+1\right)=0\)
<=> \(\orbr{\begin{cases}x+6=0\\2x+1=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-6\\x=-\frac{1}{2}\end{cases}}\)
Vậy....
hk tốt
^^
Bạn tự xét dấu "=" nhé, mình chỉ hướng dẫn cách tách thôi
a) \(A=5x^2-4x+1\)
\(A=5\left(x^2-\frac{4}{5}x+\frac{1}{5}\right)\)
\(A=5\left[x^2-2\cdot x\cdot\frac{2}{5}+\left(\frac{2}{5}\right)^2+\frac{1}{25}\right]\)
\(A=5\left[\left(x-\frac{2}{5}\right)^2+\frac{1}{25}\right]\)
\(A=5\left(x-\frac{2}{5}\right)^2+\frac{1}{5}\ge\frac{1}{5}\forall x\)
b) Tương tự đặt -9 ra ngoài rồi khai triển như câu a)
c) \(F=-2x^2-y^2+2xy+4x-40\)
\(F=-x^2-x^2-y^2+2xy+4x-40\)
\(F=-\left(x^2-2xy+y^2\right)-\left(x^2-4x+4\right)-36\)
\(F=-36-\left(x-y\right)^2-\left(x-2\right)^2\)
\(F=-36-\left[\left(x-y\right)^2+\left(x-2\right)^2\right]\le-36\forall x;y\)
a) 5x^2-(2x+1)(x-2)-x(3x+3)+7
= 5x^2-2x^2+4x-x+2-3x^2-3x+7
= 9
Suy ra 5x^2-(2x+1)(x-2)-x(3x+3)+7 ko phụ thuộc vào giá trị của biến x
b) (3x-1)(2x+3)-(x-5)(6x-1)-38x
= 6x^2+9x-2x-3-6x^2+x+30x-5-38x
=-8
Suy ra (3x-1)(2x+3)-(x-5)(6x-1)-38x ko phụ thuộc vào giá trị biến của x
c) (5x-2)(x+1)-(x-3)(5x+1)-17(x-2)
= 5x^2+5x-2x-2-5x^2-x-15x-3-17x+2
= -3
Suy ra (5x-2)(x+1)-(x-3)(5x+1)-17(x-2) ko phụ thuộc vào giá trị của biến x
d) (4x-5)(x+2)-(x+5)(x-3)-3x^2-x
= 4x^2+8x-5x-10-x^2+3x-5x+15-3x^2-x
=5
Suy ra (4x-5)(x+2)-(x+5)(x-3)-3x^2-x ko phụ thuộc vào giá trị của biến x
k mik nha
Chúc bạn học giỏi
Không bt mk ms hỏi chứ nếu phân tích đc mk đã phân tích gòi
Bài 1.
1) ( 2x + 1 )3 - ( 2x + 1 )( 4x2 - 2x + 1 ) - 3( 2x - 1 ) = 15
<=> 8x3 + 12x2 + 6x + 1 - [ ( 2x )3 - 13 ] - 6x + 3 = 15
<=> 8x3 + 12x2 + 4 - 8x3 + 1 = 15
<=> 12x2 + 15 = 15
<=> 12x2 = 0
<=> x = 0
2) x( x - 4 )( x + 4 ) - ( x - 5 )( x2 + 5x + 25 ) = 13
<=> x( x2 - 16 ) - ( x3 - 53 ) = 13
<=> x3 - 16x - x3 + 125 = 13
<=> 125 - 16x = 13
<=> 16x = 112
<=> x = 7
Bài 2.
A = ( x + 5 )( x2 - 5x + 25 ) - ( 2x + 1 )3 - 28x3 + 3x( -11x + 5 )
= x3 + 53 - ( 8x3 + 12x2 + 6x + 1 ) - 28x3 - 33x2 + 15x
= -27x3 + 125 - 8x3 - 12x2 - 6x - 1 - 33x2 + 15x
= -33x3 - 45x2 + 9x + 124 ( có phụ thuộc vào biến )
B = ( 3x + 2 )3 - 18x( 3x + 2 ) + ( x - 1 )3 - 28x3 + 3x( x - 1 )
= 27x3 + 54x2 + 36x + 8 - 54x2 - 36x + x3 - 3x2 + 3x - 1 - 28x3 + 3x2 - 3x
= 7 ( đpcm )
C = ( 4x - 1 )( 16x2 + 4x + 1 ) - ( 4x + 1 )3 + 12( 4x + 1 )3 + 12( 4x + 1 ) - 15
= ( 4x )3 - 13 - [ ( 4x + 1 )3 - 12( 4x + 1 )3 - 12( 4x + 1 ) ] - 15
= 64x3 - 1 - ( 4x + 1 )[ ( 4x + 1 )2 - 12( 4x + 1 )2 - 12 ] - 15
= 64x3 - 16 - ( 4x + 1 )[ 16x2 + 8x + 1 - 12( 16x2 + 8x + 1 ) - 12 ]
= 64x3 - 16 - ( 4x + 1 )( 16x2 + 8x - 11 - 192x2 - 96x - 12 )
= 64x3 - 16 - ( 4x + 1 )( -176x2 - 88x - 23 )
= 64x3 - 16 - ( -704x3 - 528x2 - 180x - 23 )
= 64x3 - 16 + 704x3 + 528x2 + 180x + 23
= 768x3 + 528x2 + 180x + 7 ( có phụ thuộc vào biến )
\(A=-2x^2+5x-8=-2\left(x^2-\frac{5}{2}x+4\right)\)
\(=-2\left(x^2-\frac{5}{2}x+\frac{25}{16}+\frac{39}{16}\right)=-2\left(x-\frac{5}{2}\right)^2-\frac{39}{8}\)
Vì: \(-2\left(x-\frac{5}{2}\right)^2-\frac{39}{8}\le\frac{39}{8}\forall x\)
GTLN của bt là 39/8 tại \(-2\left(x-\frac{5}{2}\right)^2=0\Rightarrow x=\frac{5}{2}\)
cn lại lm tg tự nha bn