Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) \(\dfrac{-17}{36}\) và \(\dfrac{23}{-48}\)
\(\dfrac{-17}{36}=\dfrac{-17.4}{36.4}=\dfrac{-68}{144}\)
\(\dfrac{23}{-48}=\dfrac{-23}{48}=\dfrac{-23.3}{144.3}=\dfrac{-69}{144}\)
Vì \(\dfrac{-68}{144}>\dfrac{-69}{144}\) nên \(\dfrac{-17}{36}>\dfrac{23}{-48}\)
b) \(\dfrac{-1}{3}\) và \(\dfrac{2}{5}\)
Vì \(\dfrac{-1}{3}\) là số âm mà \(\dfrac{2}{5}\) là số dương nên \(\dfrac{-1}{3}< \dfrac{2}{5}\)
c) \(\dfrac{2}{7}\) và \(\dfrac{5}{4}\)
Vì \(\dfrac{2}{7}< 1\) mà \(\dfrac{5}{4}>1\) nên \(\dfrac{2}{7}< \dfrac{5}{4}\)
d) \(\dfrac{267}{-268}\) và \(\dfrac{-1347}{1343}\)
\(\dfrac{267}{-268}=\dfrac{-267}{268}=\dfrac{-267.449}{268.449}=\dfrac{-119883}{120332}\)
\(\dfrac{-1347}{1343}=\dfrac{-1347.89}{1343.89}=\dfrac{-119883}{119527}\)
Vì \(\dfrac{-119883}{120332}>\dfrac{-119883}{119527}\) nên \(\dfrac{267}{-268}>\dfrac{-1347}{1343}\)
Bài 2:
\(\dfrac{5}{2}-\left(1\dfrac{3}{7}-0,4\right)=\dfrac{5}{2}-\dfrac{10}{7}-\dfrac{2}{5}=\dfrac{47}{70}\)
\(a)\)
Ta có :
\(1-\frac{2}{3}=\frac{1}{3};1-\frac{4}{5}=\frac{1}{5};1-\frac{7}{8}=\frac{1}{8};1-\frac{3}{4}=\frac{1}{4}\)
\(1-\frac{9}{10}=\frac{1}{10};1-\frac{8}{9}=\frac{1}{9};1-\frac{5}{6}=\frac{1}{6};1-\frac{6}{7}=\frac{1}{7}\)
Do \(\frac{1}{3}>\frac{1}{4}>\frac{1}{5}>\frac{1}{6}>\frac{1}{7}>\frac{1}{8}>\frac{1}{9}>\frac{1}{10}\)
\(\Rightarrow1-\frac{1}{3}< 1-\frac{1}{4}< 1-\frac{1}{5}< 1-\frac{1}{6}< 1-\frac{1}{7}< 1-\frac{1}{8}< 1-\frac{1}{9}< 1-\frac{1}{10}\)
\(\Rightarrow\frac{2}{3}< \frac{3}{4}< \frac{4}{5}< \frac{5}{6}< \frac{6}{7}< \frac{7}{8}< \frac{8}{9}< \frac{9}{10}\)
Nếu \(\frac{a}{b}\)là 1 số thuộc dãy trên thì số tiếp theo là :
\(\frac{a+1}{b+1}\)
\(b)\)
Ta có :
\(a\left(a+2\right)=a^2+2a\)
\(b\left(a+1\right)=ab+b\)
Sorry , đến bước này mik chịu
~ Ủng hộ nhé
Phần b) Ý bạn là so sánh \(\frac{a}{b}\)và \(\frac{a+1}{b+2}\)
Trong quá trính biến đổi giả sử trên bảng có các số a1;a2;...an ta tính đặc số P của bộ này là P=(a1+1)(a2+1)...(an+1)
Ta chứng minh đặc số P không đổi trong quá trình thực hiện phép biến đổi như trên
Thật vậy, giả sử xóa đi 2 số a,b, Khi đó trong tích P mất đi thừa số (a+1)(b+1)
Nhưng đó là ta thay a,b bằng a+b+ab nên trong tích P lại được thêm thừa số a+b+ab+1=(a+1)(b+1)
Vậy P không đổi
Như vậy P ở trạng thái ban đầu bằng P ở trạng thái cuối cùng
Ở bộ số đầu ta có:
\(P=\left(1+1\right)\left(\frac{1}{2}+1\right)\left(\frac{1}{3}+1\right)...\left(\frac{1}{2013}+1\right)=2\cdot\frac{3}{2}\cdot\frac{4}{3}....\frac{2014}{203}=2014\)
Giả sử số số cuối cùng còn lại là x thì ở số này ta có: P=x+1
Từ số suy ra x=2013
2.Giải:
Theo bài ra ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}\) và a + b + c + d = -42
Theo tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}=\frac{a+b+c+d}{2+3+4+5}=\frac{-42}{14}=-3\)
+) \(\frac{a}{2}=-3\Rightarrow a=-6\)
+) \(\frac{b}{3}=-3\Rightarrow b=-9\)
+) \(\frac{c}{4}=-3\Rightarrow c=-12\)
+) \(\frac{d}{5}=-3\Rightarrow d=-15\)
Vậy a = -6
b = -9
c = -12
d = -15
Bài 3:
Ta có:\(\frac{a}{2}=\frac{b}{3}\Leftrightarrow\frac{a}{10}=\frac{b}{15}\); \(\frac{b}{5}=\frac{c}{4}\Leftrightarrow\frac{b}{15}=\frac{c}{12}\)
\(\Rightarrow\frac{a}{10}=\frac{b}{15}=\frac{c}{12}\)
Áp dụng tc dãy tỉ:
\(\frac{a}{10}=\frac{b}{15}=\frac{c}{20}=\frac{a+b+c}{10+15+12}=\frac{-49}{37}\)
Với \(\frac{a}{10}=\frac{-49}{37}\Rightarrow a=10\cdot\frac{-49}{37}=\frac{-490}{37}\)
Với \(\frac{b}{15}=\frac{-49}{37}\Rightarrow b=15\cdot\frac{-49}{37}=\frac{-735}{37}\)
Với \(\frac{c}{12}=\frac{-49}{37}\Rightarrow c=12\cdot\frac{-49}{37}=\frac{-588}{37}\)
5/4 = 15/12
4/3 = 16/12
3/2 = 18/12
2/1 = 24/12
Do 15<16<18<24
--> 5/4<4/3<3/2<2/1