Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có 20152015 = 20152015
Ta so sánh 20152016+1 và 20152011+1
Vì 20152016 > 20152011
=> 20152016+1 > 20152011 +1
2 phân số có cùng tử số, mẫu của phân số nào nhỏ hơn thì phân số đó lớn hơn
=>\(\frac{2015^{2015}+1}{2015^{2016}+1}<\frac{2015^{2015}+1}{2015^{2017}+1}\)
Trước tiên để tính diện tích hình thang chúng ta có công thức Chiều cao nhân với trung bình cộng hai cạnh đáy.
cach tinh dien h hinh thang vuong can khi biet do dai 4 canh cong thuc tinh 2
S = h * (a+b)1/2
Trong đó
a: Cạnh đáy 1
b: Cạnh đáy 2
h: Chiều cao hạ từ cạnh đấy a xuống b hoặc ngược lại(khoảng cách giữa 2 cạnh đáy)
Ví dụ: giả sử ta có hình thang ABCD với các cạnh AB = 8, cạnh đáy CD = 13, chiều cao giữa 2 cạnh đáy là 7 thì chúng ta sẽ có phép tính diện tích hình thang là:
S(ABCD) = 7 * (8+13)/2 = 73.5
cach tinh dien h hinh thang vuong can khi biet do dai 4 canh cong thuc tinh 3
Tương tự với trường hợp hình thang vuông có chiều cao AC = 8, cạnh AB = 10.9, cạnh CD = 13, chúng ta cũng tính như sau:
S(ABCD) = AC * (AB + CD)/2 = 8 * (10.9 + 13)/2 = 95.6
Ta có 20152015 = 20152015
Ta so sánh 20152016+1 và 20152011+1
Vì 20152016 > 20152011
=> 20152016+1 > 20152011 +1
2 phân số có cùng tử số, mẫu của phân số nào nhỏ hơn thì phân số đó lớn hơn
=>\(\frac{2015^{2015}+1}{2015^{2016}+1}<\frac{2015^{2015}+1}{2015^{2011}+1}\)
Vì \(2015^{2016}+1< 2015^{2017}+1\Rightarrow\frac{2015^{2016}+1}{2015^{2017}+1}< 1\)
\(\Rightarrow A=\frac{2015^{2016}+1}{2015^{2017}+1}< \frac{2015^{2016}+1+2014}{2015^{2017}+1+2014}=\frac{2015\left(2015^{2015}+1\right)}{2015\left(2015^{2016}+1\right)}=\frac{2015^{2015}+1}{2015^{2016}+1}=B\)
Vậy \(A< B\)
\(2015A=\frac{2015^{2017}+2015}{2015^{2017}+1}=\frac{2015^{2017}+1+2014}{2015^{2017}+1}=1+\frac{2014}{2015^{2017}+1}\)
\(2015B=\frac{2015^{2016}+2015}{2015^{2016}+1}=\frac{2015^{2016}+1+2014}{2015^{2016}+1}=1+\frac{2014}{2015^{2016}+1}\)
vì \(\frac{2014}{2015^{2017}+1}< \frac{2014}{2015^{2016}+1}\)
nên \(2015A< 2015B\)
=> \(B>A\)
A = \(\frac{2015^{2016}+1}{2015^{2015}+1}=\frac{2015^{2015}+1}{2015^{2015}+1}+\frac{2015}{2015^{2015}+1}=1+\frac{2015}{2015^{2015}+1}\)
B = \(\frac{2014^{2015}+1}{2014^{2014}+1}=\frac{2014^{2014}+1}{2014^{2014}+1}+\frac{2014}{2014^{2014}+1}=1+\frac{2014}{2014^{2014}+1}\)
Rồi bạn tự so sánh nha
Áp dụng tính chất \(\frac{a}{b}< 1\Rightarrow\frac{a}{b}< \frac{a+m}{b+m}\)ta có:
\(B=\frac{2015^{2017}+1}{2015^{2018}+1}< \frac{2015^{2017}+1+2014}{2015^{2018}+1+2014}=\frac{2015^{2017}+2015}{2015^{2018}+2015}\)
\(=\frac{2015\left(2015^{2016}+1\right)}{2015\left(2015^{2017}+1\right)}=\frac{2015^{2016}+1}{2015^{2017}+1}\)
\(\Rightarrow\frac{2015^{2017}+1}{2015^{2018}+1}< \frac{2015^{2016}+1}{2015^{2017}+1}\)
Vậy \(B< A\)
Hay \(A>B\)
nhìn cái đề là thấy A và B cùng tử
mẫu của A < mẫu của B thì
A>B
từ đó ta sẽ
=> A>B