K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

$ĐKXĐ : x \neq 2, x \neq -2$

Ta có : $1+\dfrac{2}{x-2} = \dfrac{2x^2}{x^2-4}$

$\to \dfrac{x^2-4+2.(x+2)}{(x-2).(x+2)} = \dfrac{2x^2}{(x-2).(x+2)}$

$\to x^2-4+2.(x+2)  = 2x^2$

$\to x^2 -2x - 8 = 0 $

$\to (x-4).(x+2) = 0 $

$\to x = 4$ ( Do $x \neq -2, 2$ )

Vậy \(S=\left\{4\right\}\)

4 tháng 11 2018

a) \(\left(x+1\right)^2-2\left(x+1\right)\left(3-x\right)+\left(x-3\right)^2=0\)

\(\Leftrightarrow\left(x+1\right)^2+2\left(x+1\right)\left(x-3\right)+\left(x-3\right)^2=0\)

\(\Leftrightarrow\left(x+1+x-3\right)^2=0\)

\(\Leftrightarrow\left(2x-2\right)^2=0\)

\(\Leftrightarrow2x-2=0\Leftrightarrow x=1\)

Vậy x = 1

b) \(\left(x+2\right)^2-2\left(x+2\right)\left(x-8\right)+\left(x-8\right)^2=0\)

\(\Leftrightarrow\left(x+2-x+8\right)^2=0\)

\(\Leftrightarrow\)\(\left(0x+10\right)^2=0\)

=> Phương trình vô nghiệm

4 tháng 11 2018

phần a bạn có viết đề sai không zợ ???

2 tháng 9 2017

Ta có :\(\frac{x^7+x^6+x^5+x^4+x^3+x^2+1}{x^2-1}\)

\(=\frac{x^6\left(x+1\right)+x^4\left(x+1\right)+x^2\left(x+1\right)+\left(x+1\right)}{x^2-1}\)

\(=\frac{\left(x^6+x^4+x^2+1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\)

\(=\frac{\left(x^6+x^4+x^2+1\right)}{\left(x-1\right)}\)

2 tháng 4 2019

a) \(\left|x-2\right|+3x-9=0\)

\(\Leftrightarrow\left|x-2\right|=9-3x\)

+) Xét \(x\ge2\)

\(pt\Leftrightarrow x-2=9-3x\)

\(\Leftrightarrow x+3x=9+2\)

\(\Leftrightarrow4x=11\)

\(\Leftrightarrow x=\frac{11}{4}\left(tm\right)\)

+) Xét \(x< 2\)

\(pt\Leftrightarrow2-x=9-3x\)

\(\Leftrightarrow-x+3x=9-2\)

\(\Leftrightarrow2x=7\)

\(\Leftrightarrow x=\frac{7}{2}\left(ktm\right)\)

Vậy....

18 tháng 12 2016

x#-5

 

19 tháng 12 2016

x khác -5

21 tháng 10 2016

đầu tiên , x^4 + x^3 + 2X^2 +x+1 = (X^2)^2 + 2X^2 + 1 + X^3 + X = (x^2+1)^2 + x(X^2 +1) = ... đoạn này tự lm nha

21 tháng 10 2016

Mình có cách khác :

\(=\left(x^4+x^3+x^2\right)+\left(x^2+x+1\right)=\left(x^2+x+1\right)\left(x^2+1\right)\)

4 tháng 5 2016

ĐKXĐ: x khác + -2

 A=( 1/(x-2) + 2x/(x-2)(x+2) +1/(x+2)) . (x-1)/2

   =((x+2+2x+x-2)/(x-2)(x+2)).((x-1)/2)

   =(4x/(x-2)(x+2)).(x-1)/2 =2x/ (x-1)(x-2)(x+2)
 

23 tháng 7 2019

a) \(\left(x^2-1\right)^3-\left(x^4+x^2+1\right)\left(x^2-1\right)=\left(x^2-1\right)\left[\left(x^2-1\right)^2-\left(x^4+x^2+1\right)\right]\)

\(=\left(x^2-1\right)\left(x^4-2x^2+1-x^4-x^2-1\right)=\left(x^2-1\right)\left(-3x^2\right)\)

\(=-3x^4+3x^2=3\left(x^2-x^4\right)=3\left(x-x^2\right)\left(x+x^2\right)=\left(3x-3x^2\right)\left(x+x^2\right).\)

23 tháng 7 2019

b)\(\left(x^4-3x^2+9\right)\left(x^2+3-\left(3+x^2\right)\right)^3=\left(x^4-3x^2+9\right).0^3=0\)

c)\(\left(x-3\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+6\left(x+1\right)^2=\left(x-3\right)^3-\left(x^3-3^3\right)+6\left(x^2+2x+1\right)\)

\(=\left(x-3\right)^3-\left[\left(x-3\right)^3+3.x.3.\left(x-3\right)\right]+6x^2+12x+6\)

\(=6x^2+12x+6-9x\left(x-3\right)=6x^2+12x+6-9x^2+27x\)

\(=39x-3x^2+6=3\left(13x-x^2+2\right).\)