Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề bài nó như thế này phải không bạn:
\(\frac{5\left(2^2.3^2\right)^9.\left(2^2\right)^6-2\left(2^2.3\right)^{14}.3^4}{5.2^{28}.3^{18}-7.2^{29}.3^{18}}\)
\(S=2^1+2^2+2^3+2^4+2^5+2^6+..+2^{28}+2^{29}+2^{30}\)
\(S=2.\left(1+2+2^2\right)+2^4.\left(1+2+2^2\right)+...+2^{28}.\left(1+2+2^2\right)\)
\(S=\left(1+2+2^2\right).\left(2+2^4+...+2^{28}\right)\)
\(S=7.\left(2+2^4+...+2^{28}\right)\)
⇒ \(S⋮7\) ( điều phải chứng minh )
a,\(5^3.2-100:4+2^3.5\)
= 125 . 2 - 25 + 8 . 5
= 250 - 25 + 40
= 265
b, \(6^2:9+50.2-3^3.3\)
= 36 : 9 + 100 - 27 . 3
= 4 + 100 - 81
= 23
a) \(4^3\cdot32^4\)
\(=\left(2^2\right)^3\cdot\left(2^5\right)^4\)
\(=2^6\cdot2^{20}\)
\(=2^{26}\)
b) \(3^{20}\cdot9^{10}\cdot27^2\)
\(=3^{20}\cdot\left(3^2\right)^{10}\cdot\left(3^3\right)^2\)
\(=3^{20}\cdot3^{20}\cdot3^6\)
\(=3^{46}\)
c) \(3^{10}\cdot7^{10}\)
\(=\left(3\cdot7\right)^{10}\)
\(=21^{10}\)
d) \(6^{15}:6^{14}\)
\(=6^{15-14}\)
\(=6\)
e) \(28^3:7^3\)
\(=4^3\cdot7^3:7^3\)
\(=4^3\)
\(=2^6\)
\(B=\left(3+3^3+3^5\right)+3^6\left(3+3^3+3^5\right)+.............+3^{24}\left(3+2^3+3^5\right)\)
\(B=273+273\cdot3^6+.............+273\cdot3^{24}\)
\(B=273\left(1+3^6+.......+3^{24}\right)⋮273\)
\(\left(3^{31}+3^{32}+3^{33}\right):\left(3^{30}+3^{29}+3^{28}\right)\)
\(=\left(3^{31}+3^{31}.3+3^{31}.3^2\right):\left(3^{28}.3^2+3^{28}.3+3^{28}\right)\)
\(=3^{31}.\left(1+3+3^2\right):3^{28}\left(3^2+3+1\right)\)
\(=\left(3^{31}:3^{28}\right).\left[\left(1+3+3^2\right):\left(1+3+3^2\right)\right]\)
\(=3^3.1\)
\(=27\)
3^31:3^30+3^31:3^29+3^31:3^28+3^32:3^30+3^32:3^29+3^32:3^28+3^33:3^30+3^33:3^29+3^33:3^28
3+3^2+3^3+3^2+3^3+3^4+3^3+3^4+3^5=507