K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 10 2023

Để chứng minh ΔMAB = ΔMAC, ta có thể sử dụng nguyên lý cắt giao. Vì AB = AC và M là trung điểm BC, nên ta có AM là đường trung trực của đoạn thẳng BC. Từ đó, ta có AM ⊥ BC. Vì AM là đường trung trực của đoạn thẳng BC, nên ta cũng có MB = MC. Như vậy, ta đã chứng minh được ΔMAB = ΔMAC.

Để chứng minh AM là tia phân giác của góc BAC, ta có thể sử dụng tính chất của tam giác cân. Vì AB = AC và AM là đường trung trực của đoạn thẳng BC, nên ta có AM là tia phân giác của góc BAC.

Để chứng minh AM ⊥ BC, ta đã chứng minh ở trên rồi. Vì AM là đường trung trực của đoạn thẳng BC, nên ta có AM ⊥ BC.

18 tháng 11 2018

A B C M 1 2 1 2

a) Xét \(\Delta AMC\) và \(\Delta AMB\) có:

AC = AB (gt)

CM = BM (gt,do M là trung điểm BC)

AM (cạnh chung)

     Do đó \(\Delta AMC=\Delta AMB\) (c.c.c)

\(\Rightarrow\widehat{A_1}=\widehat{A_2}\Rightarrow\) M là tia phân giác của \(\widehat{BAC}\) (1)

b) \(\Delta AMC=\Delta AMB\) (chứng minh trên)

\(\Rightarrow\widehat{M_1}=\widehat{M_2}\). Mà \(\widehat{M_1} +\widehat{M_2}=180^o\) (kề bù)

Nên \(\widehat{M_1}=\widehat{M_2}=\frac{180^o}{2}=90^o\)

Suy ra \(AM\perp BC\) (2)

Từ (1) và (2) suy ra đpcm

17 tháng 2 2019

\(MH\perp AB\left(gt\right)\Rightarrow\widehat{MHA}=\widehat{MHB}=90^0\)

\(MK\perp AC\left(gt\right)\Rightarrow\widehat{MKA}=\widehat{MKC}=90^0\)

M là trung điểm của BC (gt) nên MB = MC

AM là tia phân giác của góc A (gt) \(\Rightarrow\widehat{BAM}=\widehat{CAM}\Rightarrow\widehat{HAM}=\widehat{KAM}\)

\(\Delta AHM=\Delta AKM\left(ch-gn\right)\Rightarrow HM=KM\) (2 cạnh tương ứng)

\(\Delta HMB=\Delta KMC\left(ch-cgv\right)\Rightarrow\widehat{B}=\widehat{C}\) ( 2 góc t/ứ)

4 tháng 11 2018

M ở đâu ra  vậy bạn

26 tháng 12 2018

bạn ơi M ở đâu z

26 tháng 12 2018

A B C K Ta có K là trung điểm của BC

mà BC=Ba

suy ra K là đường trung tuyến của tam giác ABC

Xét tam gAKB và tg AMC

BK=BC

A1=A2(cmt)

BA=BC(BC=BA suy ra ABC là tam giác đều)

2 tam giác = nhau (c-g-c)

Bài 1: Cho tam giác ABC; M là trung điểm của AB, N là trung điểm của AC. Trên tia đối của tia NM lấy D sao cho ND=NM. Chứng minh: a) DC= \(\frac{1}{2}\)AB và DC // ACb) AD=MCc) MN // BC và MN =\(\frac{1}{2}\)BCBài 2: tam giác ABC có góc BAC = 90 độ và AB < AC. Trên tia đối của tia BA lấy điểm E sao cho AE = AC. Trên tia đối của tia AC lấy điểm D sao cho AD = AB. Gọi M là trung điểm của BC; N là trung điểm của DE. Đường...
Đọc tiếp

Bài 1: Cho tam giác ABC; M là trung điểm của AB, N là trung điểm của AC. Trên tia đối của tia NM lấy D sao cho ND=NM. Chứng minh: 

a) DC= \(\frac{1}{2}\)AB và DC // AC

b) AD=MC

c) MN // BC và MN =\(\frac{1}{2}\)BC

Bài 2: tam giác ABC có góc BAC = 90 độ và AB < AC. Trên tia đối của tia BA lấy điểm E sao cho AE = AC. Trên tia đối của tia AC lấy điểm D sao cho AD = AB. Gọi M là trung điểm của BC; N là trung điểm của DE. Đường thẳng BC cắt DE tại H. Chứng minh:

a) DE=BC

b) BC\(\perp\)DE tại H

c) AN = AM và AN\(\perp\)AM

Bài 3: Cho tam giác ABC có góc A > 90 độ, M là trung điểm của BC. Từ B kẻ đường thẳng song song với AC cắt đường thẳng AM tại N. Trên nửa mặt phẳng bờ AB không chứa C vẽ tia Ax \(\perp\)AB, trên Ax lấy điểm D sao cho AD = AB. Trên nửa mặt phẳng bờ AC không chứa B vẽ tia Ay \(\perp\)AC, trên Ay lấy điểm E sao cho AE = AC. Chứng minh:

a) BN = CA

b) góc BAC + góc DAE = 180 độ 

c) AM = \(\frac{1}{2}\)DE

Nhớ vẽ hình hộ mik nha :))

 

0