Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 : \(A=1+3+3^2+...+3^{31}\)
a. \(A=\left(1+3+3^2\right)+...+3^9.\left(1.3.3^2\right)\)
\(\Rightarrow A=13+3^9.13\)
\(\Rightarrow A=13.\left(1+...+3^9\right)\)
\(\Rightarrow A⋮13\)
b. \(A=\left(1+3+3^2+3^3\right)+...+3^8.\left(1+3+3^2+3^3\right)\)
\(\Rightarrow A=40+...+3^8.40\)
\(\Rightarrow A=40.\left(1+...+3^8\right)\)
\(\Rightarrow A⋮40\)
Bài 2:
Ta có: \(C=3+3^2+3^4+...+3^{100}\)
\(\Rightarrow C=(3+3^2+3^3+3^4)+...+(3^{97}+3^{98}+3^{99}+3^{100})\)
\(\Rightarrow3.(1+3+3^2+3^3)+...+3^{97}.(1+3+3^2+3^3)\)
\(\Rightarrow3.40+...+3^{97}.40\)
Vì tất cả các số hạng của biểu thức C đều chia hết cho 40
\(\Rightarrow C⋮40\)
Vậy \(C⋮40\)
Ta có : \(3C=3+3^2+3^3+......+3^{12}\)
\(\Rightarrow3C-C=\left(3+3^2+3^3+....+3^{12}\right)-\left(1+3+3^2+3^3+...+3^{11}\right)=3^{12}-1=531440\)
\(hoặc\)\(2C=531140\Rightarrow C=265720\)chia hết cho 13 và 40
b, \(C=1+3+3^2+3^3+...+3^{11}\)
\(=\left(1+3+3^2+3^3\right)+...+\left(3^8+3^9+3^{10}+3^{11}\right)\)
\(=\left(1+3+9+27\right)+...+3^8.\left(1+3+3^2+3^3\right)\)
\(=40+...+3^8.40\)
\(=40.\left(1+...+3^8\right)⋮40\)
\(\Rightarrow\) \(C⋮40\)
* C=(1+3+32)+(33+34+35)+...+(39+310+311)
= 13+33.(1+3+32)+...+39.(1+3+32)
= 13+33.13+...+39.13 chia hết cho 13
* Tương tự nhóm 4 số hạng một với nhau.
Chúc bạn học tốt!
1. C chia hết cho 13
C=(1+3+3^2)+(3^3+3^4+3^5)+...+(3^9+3^10+3^11)
= 13 + 3^3.(1+3+3^2)+...+3^9.(1+3+3^2)
= 13 + 3^3.13+...+3^9.13
= 13.(3^3+...+3^9) chia hết cho 13
(vì 13 chia hết cho 13)
2. C chia hết cho 40
C = 1 + 3 + 32 + 33 + ......+311
C=30+31+32+...311
C = (30 + 3 + 32 + 33) + (34 + 35 + 36 + 37) + (38 + 39 + 310+ 311)
C = 30(1 + 3 + 32 + 33) + 34(1 + 3 + 32 + 33) + 38(1 + 3 + 32 + 33)
C = 30.40 + 34. 80 + 38. 40
C= 40(30 + 34 + 38) ( chia hết cho 40 vì tích có thừa số 40
Vì 13 là lẻ \(\Rightarrow\) 13, 132, 133, 134, 135, 136 là lẻ.
Mà lẻ + lẻ + lẻ + lẻ + lẻ + lẻ = chẵn nên 13 + 132 + 133 + 134 + 135 + 136 là chẵn. \(\Rightarrow\) 13 + 132 + 133 + 134 + 135 + 136 \(⋮\) 2
\(\Rightarrow\) ĐPCM
1. \(A=2^{2016}-1\)
\(2\equiv-1\left(mod3\right)\\ \Rightarrow2^{2016}\equiv1\left(mod3\right)\\ \Rightarrow2^{2016}-1\equiv0\left(mod3\right)\\ \Rightarrow A⋮3\)
\(2^{2016}=\left(2^4\right)^{504}=16^{504}\)
16 chia 5 dư 1 nên 16^504 chia 5 dư 1
=> 16^504-1 chia hết cho 5
hay A chia hết cho 5
\(2^{2016}-1=\left(2^3\right)^{672}-1=8^{672}-1⋮7\)
lý luận TT trg hợp A chia hết cho 5
(3;5;7)=1 = > A chia hết cho 105
2;3;4 TT ạ !!
b, A = 3+3^2 +3^3 +3^4 +....+3^120 =﴾3+3^2+3^3﴿+......+﴾3^118+3^119+3^120﴿ =3﴾1+3+3^2﴿+....+3^118﴾1+3+3^2﴿ = 3.13+...+3^118. 13 = 13﴾ 3+...+3^118﴿ chia hết cho 13 c, A = 3+3^2 +3^3 + 3^4 +....+3^120 = ﴾3+3^2+3^3+3^4﴿+.....+﴾3^117+3^118+3^119+3^120﴿ = 3﴾1+3+3^2+3^3﴿ +...+3^117﴾ 1+3+3^2 +3^3﴿ = 3.40+ ...+3^117 .40 = 40 .﴾ 3+....+3^117﴿ chia hết cho 40
b, A = 3+3^2 +3^3 +3^4 +....+3^120
=(3+3^2+3^3)+......+(3^118+3^119+3^120)
=3(1+3+3^2)+....+3^118(1+3+3^2)
= 3.13+...+3^118. 13
= 13( 3+...+3^118) chia hết cho 13
c, A = 3+3^2 +3^3 + 3^4 +....+3^120
= (3+3^2+3^3+3^4)+.....+(3^117+3^118+3^119+3^120)
= 3(1+3+3^2+3^3) +...+3^117( 1+3+3^2 +3^3)
= 3.40+ ...+3^117 .40
= 40 .( 3+....+3^117) chia hết cho 40
a) C = 1 + 3 + 32 + 33 + ... + 311
C = ( 1 + 3 + 32 ) + ( 33 + 34 + 35 ) + ... + ( 39 + 310 + 311 )
C = 13 + 33 . ( 1 + 3 + 32 ) + ... + 39 . ( 1 + 3 + 32 )
C = 13 + 33 . 13 + ... + 39 . 13
C = 13 . ( 1 + 33 + ... + 39 ) chia hết cho 13
b) C = 1 + 3 + 32 + 33 + ... + 311
C = ( 1 + 3 + 32 + 33 ) + ( 34 + 35 + 36 + 37 ) + ( 38 + 39 + 310 + 311 )
C = 40 + 34 . ( 1 + 3 + 32 + 33 ) + 38 . ( 1 + 3 + 32 + 33 )
C = 40 + 34 . 40 + 38 . 40
C = 40 . ( 1 +34 + 38 ) chia hết cho 40
ta có:
\(3C=3+3^2+3^3+...+3^{12}\)
\(2C=3C-C=3^{12}-1\)
\(C=\frac{3^{12}-1}{2}\)