Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Gọi chu vi tam giác A’B’C’ là P’ và chu vi tam giác ABC là P.
ΔA'B'C' ΔABC theo tỉ số đồng dạng k = 3/5
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
Vậy tỉ số chu vi tam giác A’B’C’ và tam giác ABC là 3/5
⇒ P = 100 ⇒ P’ = 60.
Vậy chu vi tam giác ABC bằng 100dm và chu vi tam giác A’B’C’ là 60dm.
a) Ta có:
⇒ ΔABC ΔA’B’C’ (c.c.c).
b) Ta có:
Vậy tỉ số chu vi của tam giác ABC và chu vi của tam giác A’B’C’ là 3/2.
a: Xét ΔABC vuông tại A và ΔDEF vuông tại D có
AB/DE=AC/DF
Do đó: ΔABC\(\sim\)ΔDEF
b: \(\dfrac{C_{ABC}}{C_{DEF}}=\dfrac{AB}{DE}=\dfrac{2}{3}\)
a: Ta có: ΔA'B'C'∼ΔABC
nên A'B'/AB=B'C'/BC=A'C'/AC
=>A'B'/6=B'C'/12=A'C'/8=3/2
=>A'B'=9cm; B'C'=18cm; A'C'=12cm
b: Ta có: ΔA'B'C'∼ΔABC
nên \(\dfrac{C_{A'B'C'}}{C_{ABC}}=\dfrac{3}{2}\)
a) Ta có:
\(\dfrac{AB}{DF}=\dfrac{6}{12}=\dfrac{1}{2}\)
\(\dfrac{AC}{EF}=\dfrac{9}{18}=\dfrac{1}{2}\)
\(\dfrac{BC}{DE}=\dfrac{12}{24}=\dfrac{1}{2}\)
\(\Rightarrow\dfrac{AB}{DF}=\dfrac{AC}{EF}=\dfrac{BC}{DE}=\dfrac{1}{2}\)
Xét \(\Delta ABC\) và \(\Delta FDE\) có:
\(\dfrac{AB}{DF}=\dfrac{AC}{EF}=\dfrac{BC}{DE}\) (cmt)
\(\Rightarrow\Delta ABC\sim\Delta FDE\) (c-g-c)
Do \(\dfrac{AB}{DF}=\dfrac{AC}{EF}\) (cmt)
\(\Rightarrow AB.EF=AC.DF\)
b) Chu vi \(\Delta ABC\)
\(P_1=AB+AC+BC=6+9+12=27\left(cm\right)\)
Chu vi \(\Delta FDE\):
\(P_2=DF+EF+DE=12+18+24=54\left(cm\right)\)
Tỉ số chu vi của chúng:
\(\dfrac{P_1}{P_2}=\dfrac{27}{54}=\dfrac{1}{2}\)
Cách 2 (không khuyến khích làm theo cách này):
a) Ta có:
AB . EF = 6 . 18 = 108 (cm)
AC . DF = 9 . 12 = 108 (cm)
\(\Rightarrow AB.EF=AC.DF=108\left(cm\right)\)
Bài 2 :
vì BE vuông góc BD nên BE là đường phân giác ngoài của tam giác ABC.
theo tính chất đường phân giác (ngoài) ta có :
AEEB=ECBCAEEB=ECBC
⇒⇒ CE=AB.BCABCE=AB.BCAB
⇒⇒ CE=AE.23CE=AE.23
⇒⇒ 3CE=(CE+AC).23CE=(CE+AC).2
⇒⇒ 3CE=2CE+2AC3CE=2CE+2AC
⇒⇒ CE=2AC=6(cm)
Bài 1: Giải
Nếu cạnh lớn nhất của tam giác đã cho là cạnh bé nhất của tam giác đồng dạng với nó thì ta có tỉ số đồng dạng đã cho là: (Gọi tạm tam giác có cạnh 12,16,18 m là tgiac 1, tgiac mới là tgiac 2)
k=Δ1Δ2=1218=23k=Δ1Δ2=1218=23
Chu vi của tam giác 1 là:
12+16+18=46(m)12+16+18=46(m)
⇒⇒ Chu vi của tam giác 2 là: 46:23=69(m)46:23=69(m)
Cạnh thứ hai của tam giác đồng dạng (2) là:
16:23=24(m)16:23=24(m)
Cạnh lớn nhất của tam giác đồng dạng (2) đó là:
69−24−18=27(m
Bài 3 tớ k bt lm