Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Xác\text{ }suất\text{ }ít\text{ }nhất\text{ }để\text{ }một\text{ }trong\text{ }ba\text{ }cầu\text{ }thủ\text{ }gi\text{ }bàn\text{ }là:\)
\(1-\left(1-x\right)\left(1-y\right)\cdot0,4=0,976_{\left(1\right)}\)
\(Xác\text{ }suất\text{ }để\text{ }cả\text{ }ba\text{ }cầu\text{ }thủ\text{ }đều\text{ }ghi\text{ }bàn\text{ }là:\)
\(0,6xy=0,336\Leftrightarrow xy=56\Leftrightarrow y=\dfrac{0,56}{x}_{\left(2\right)}\)
\(Thay_{\left(2\right)}vào_{\left(1\right)}ta\text{ }có:\)
\(1-\left(1-x\right)\left(1-\dfrac{0,56}{x}\right)\cdot0,4=0,976\)
\(\Leftrightarrow\left(1-\dfrac{0,56}{x}-x+0,56\right)\cdot0,4=0,24\)
\(\Leftrightarrow1,56-\dfrac{0,56}{x}-x=0,06\)
\(\Leftrightarrow\dfrac{0,56}{x}+x=1,5\Leftrightarrow x^2-1,5x+0,56=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0,7\Rightarrow y=0,8\left(ktm\right)\\x=0,8\Rightarrow y=7\left(tm\right)\end{matrix}\right.\)
\(Xác\text{ }suất\text{ }để\text{ }có\text{ }đúng\text{ }hai\text{ }cầu\text{ }thủ\text{ }ghi\text{ }bàn\text{ }là:\\ 0,8\cdot0,7\cdot0,4+0,8\cdot0,3\cdot0,6+0,2\cdot0,7\cdot0,6=0,452\)
Đáp án B.
Xác suất để xạ thủ thứ nhất bắn không trúng bia là: 1 − 1 2 = 1 2
Xác suất để xạ thủ thứ hai bắn không trúng bia là: 1 − 1 3 = 2 3
Gọi biến cố A: Có ít nhất một xạ thủ không bắn trúng bia . Khi có biến cố A có 3 khả năng xảy ra:
* Xác suất người thứ nhất bắn trúng bia, người thứ hai không bắn trúng bia là 1 2 . 2 3 = 1 3
* Xác suất người thứ nhất không bắn trúng bia, người thứ hai bắn trúng bia là 1 2 . 1 3 = 1 6
* Xác suất cả hai người đều bắn không trúng bia là 1 2 . 2 3 = 1 3
Để tổng các số trên 3 quả bằng 5 thì: (2 quả số 1, 1 quả số 3) hoặc (1 quả số 1, 2 quả số 2)
\(\Rightarrow\) Xác suất: \(\dfrac{C_2^1.C_3^2}{C_2^1.C_3^2+C_2^2.C_4^1}=...\)
Xác suất ghi bàn tương ứng là 0,85; 0,6 và 0,5 đồng nghĩa xác suất đá trượt tương ứng là 0,15; 0,4 và 0,5
a. Có đúng 1 cầu thủ ghi bàn (nghĩa là 2 cầu thủ còn lại đá trượt): (gồm các TH1: (cầu thủ 1 ghi bàn, cầu thủ 2 đá trượt, cầu thủ 3 đá trượt); TH2: cầu thủ 1 đá trượt, cầu thủ 2 ghi bàn, cầu thủ 3 đá trượt; TH3: cầu thủ 1 đá trượt, cầu thủ 2 đá trượt, cầu thủ 3 ghi bàn):
\(P=0,85.0,4.0,5+0,15.0,6.0,5+0,15.0,4.0,5=...\)
b. Ta sẽ sử dụng quy tắc loại trừ (hay còn gọi là phần bù) để làm câu này.
Tổng xác suất của: "có ít nhất 1 người ghi bàn" và "tất cả đều đá trượt" bằng 1
Do đó, ta chỉ cần tìm xác suất của "tất cả đều đá trượt" rồi lấy 1 trừ đi là được.
Xác suất để tất cả đều đá trượt:
\(\overline{P}=0,15.0,4.0,5=...\)
Xác suất cần tìm: \(P=1-\overline{P}=...\)