K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 1 2018

Giải phương trình

30 tháng 1 2018

2X^3+3X^2-32X=48

=>X^2(2x+3)=48+32X

<=>x^2(2X+3)=16(3+2X)

=>X^2=16

=>X=4

\(\Leftrightarrow2x^3+3x^2-32x-48=0\)

\(\Leftrightarrow x^2\left(2x+3\right)-16\left(2x+3\right)=0\)

\(\Leftrightarrow\left(2x+3\right)\left(x-4\right)\left(x+4\right)=0\)

hay \(x\in\left\{-\dfrac{3}{2};4;-4\right\}\)

9 tháng 4 2018

2x2 + 3x2 -32x =48

5x2-32x-48=0

X (5x-32-48)=0

X=0 hoặc 5x-32-48=0

Th1

X=0

Th2

5x-32-48=0

5x-32=48

5x=48+32

5x=80

x=80÷5

x=16

Nhấn đúng cho mình nhé

9 tháng 4 2018

sửa lại đề đi bạn-.-

18 tháng 4 2020

a)3(x-1)(2x-1)-5(x+8)(x-1)=0

<=>(x-1)(6x-3-5x-40)=0

<=>(x-1)(x-43)=0

b)2x^3+3x^2-32x-48=0

<=>x^2(2x+3)-16(2x+3)=0

<=>(2x+3)(x-4)(x+4)=0

học tốt

AH
Akai Haruma
Giáo viên
13 tháng 2 2020

Lời giải:

a)

$3(x-1)(2x-1)=5(x+8)(x-1)$

$\Leftrightarrow (x-1)[3(2x-1)-5(x+8)]=0$

$\Leftrightarrow (x-1)(x-43)=0$

$\Rightarrow x-1=0$ hoặc $x-43=0$

$\Rightarrow x=1$ hoặc $x=43$

b)

$9x^2-1=(3x+1)(4x+1)$

$\Leftrightarrow (3x+1)(3x-1)=(3x+1)(4x+1)$

$\Leftrightarrow (3x+1)(4x+1)-(3x+1)(3x-1)=0$

$\Leftrightarrow (3x+1)[(4x+1)-(3x-1)]=0$

$\Leftrightarrow (3x+1)(x+2)=0$

$\Rightarrow 3x+1=0$ hoặc $x+2=0$

$\Rightarrow x=\frac{-1}{3}$ hoặc $x=-2$

c)

$(x+7)(3x-1)=49-x^2=(7-x)(7+x)$

$\Leftrightarrow (x+7)(3x-1)-(7-x)(7+x)=0$

$\Leftrightarrow (x+7)(3x-1-7+x)=0$

$\Leftrightarrow (x+7)(4x-8)=0$

$\Rightarrow x+7=0$ hoặc $4x-8=0$

$\Rightarrow x=-7$ hoặc $x=2$

d)

$x^3-5x^2+6x=0$

$\Leftrightarrow x(x^2-5x+6)=0$

$\Leftrightarrow x(x-2)(x-3)=0$

$\Rightarrow x=0; x-2=0$ hoặc $x-3=0$

$\Rightarrow x=0; x=2$ hoặc $x=3$

e)

$2x^3+3x^2-32x=48$

$\Leftrightarrow 2x^3+3x^2-32x-48=0$

$\Leftrightarrow 2x^2(x-4)+11x(x-4)+12(x-4)=0$

$\Leftrightarrow (x-4)(2x^2+11x+12)=0$

$\Leftrightarrow (x-4)[2x(x+4)+3(x+2)]=0$

$\Leftrightarrow (x-4)(x+4)(2x+3)=0$

$\Rightarrow x-4=0; x+4=0$ hoặc $2x+3=0$

$\Rightarrow x=4; x=-4$ hoặc $x=-\frac{3}{2}$

AH
Akai Haruma
Giáo viên
2 tháng 2 2020

Lời giải:

a)

$3(x-1)(2x-1)=5(x+8)(x-1)$

$\Leftrightarrow (x-1)[3(2x-1)-5(x+8)]=0$

$\Leftrightarrow (x-1)(x-43)=0$

$\Rightarrow x-1=0$ hoặc $x-43=0$

$\Rightarrow x=1$ hoặc $x=43$

b)

$9x^2-1=(3x+1)(4x+1)$

$\Leftrightarrow (3x+1)(3x-1)=(3x+1)(4x+1)$

$\Leftrightarrow (3x+1)(4x+1)-(3x+1)(3x-1)=0$

$\Leftrightarrow (3x+1)[(4x+1)-(3x-1)]=0$

$\Leftrightarrow (3x+1)(x+2)=0$

$\Rightarrow 3x+1=0$ hoặc $x+2=0$

$\Rightarrow x=\frac{-1}{3}$ hoặc $x=-2$

c)

$(x+7)(3x-1)=49-x^2=(7-x)(7+x)$

$\Leftrightarrow (x+7)(3x-1)-(7-x)(7+x)=0$

$\Leftrightarrow (x+7)(3x-1-7+x)=0$

$\Leftrightarrow (x+7)(4x-8)=0$

$\Rightarrow x+7=0$ hoặc $4x-8=0$

$\Rightarrow x=-7$ hoặc $x=2$

d)

$x^3-5x^2+6x=0$

$\Leftrightarrow x(x^2-5x+6)=0$

$\Leftrightarrow x(x-2)(x-3)=0$

$\Rightarrow x=0; x-2=0$ hoặc $x-3=0$

$\Rightarrow x=0; x=2$ hoặc $x=3$

e)

$2x^3+3x^2-32x=48$

$\Leftrightarrow 2x^3+3x^2-32x-48=0$

$\Leftrightarrow 2x^2(x-4)+11x(x-4)+12(x-4)=0$

$\Leftrightarrow (x-4)(2x^2+11x+12)=0$

$\Leftrightarrow (x-4)[2x(x+4)+3(x+2)]=0$

$\Leftrightarrow (x-4)(x+4)(2x+3)=0$

$\Rightarrow x-4=0; x+4=0$ hoặc $2x+3=0$

$\Rightarrow x=4; x=-4$ hoặc $x=-\frac{3}{2}$

24 tháng 12 2020

a, \(\frac{x+1}{2x+6}+\frac{2x+3}{x^2+3x}=\frac{x+1}{2\left(x+3\right)}+\frac{3x+2}{x\left(x+3\right)}\)

\(=\frac{x^2+x}{2x\left(x+3\right)}+\frac{6x+4}{2x\left(x+3\right)}=\frac{x^2+7x+4}{2x\left(x+3\right)}\)

b, Sua de :  \(\frac{3}{2x+6}-\frac{x-6}{2x^2+6x}=\frac{3}{2\left(x+3\right)}-\frac{x-6}{2x\left(x+3\right)}\)

\(=\frac{3x}{2x\left(x+3\right)}-\frac{x-6}{2x\left(x+3\right)}=\frac{2x+6}{2x\left(x+3\right)}=\frac{1}{x}\)