K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2x3-623x2-310x-614

=2.3123-623.3122-310.312-614

=(2.312-623)3122-310.312-614

=3122-310.312-614

=312(312-310)-614

=312.2-614=624-614=10

28 tháng 7 2018

1. B = 372 + 2.37.63 + 632  = ( 37 + 63 )2 = 1002 = 10000 .                ( bài này bạn ghi sai đề ) 

2. B = 152 - 30.115 + 1152 = 152 - 2.15.115 + 1152 = ( 15 - 115 )2 = ( -100 )2 = 10000 .

3. B = 422 + 512 - 322 - 412 = ( 422 - 412 ) + 512 - 322 = ( 42 - 41 )( 42 + 41 ) + 16.32 - 322 

                                                                                       = 83 + 32( 16 - 32 ) 

                                                                                       = 83 + 32( -16 ) 

                                                                                       = 83 + 512 = -429 . 

4. B = x2 + 2x + 3 với x = 19    

  Thay x = 19 vào biểu thức , ta được : 

    B = 192 + 2.19 + 3 = ( 192 + 2.19 + 1 ) + 2 = ( 19 + 1 )2 + 2 = 202 +2 = 400 + 2 = 402 .

 Mình làm xong đầu tiên k mình nha .

                                                                                                   

                       

28 tháng 7 2018

\(1,B=37^2+2.57.63+63^2\)

\(B=\left(37+63\right)^2\)

\(B=100^2=10000\)

\(2,B=15^2-30.115+115^2\)

\(B=15^2-2.15.115+115^2\)

\(B=\left(15-115\right)^2\)

\(B=\left(-100\right)^2=10000\)

18 tháng 8 2018

a, 3x3 . 5x2 = 15x5

b, 2x . ( 3x2 + 2x ) = 6x3 + 4x2

c, -3xy . ( 2x + 5y ) = -6x2y +-15xy2

d, 3x2. ( 6 - x2 + 2x ) = 18x2 - 3x3 + 6x3

e, ( x + 2 ) . ( x + 3 ) = x2 + 5x + 6

i,  ( x - 4 ) . ( x + 4 ) = x2 - 16

h, ( 1 - 2x ) . ( 3x + 2 ) = 2 - 6x2 - x

k, ( x - y ) . ( x + y ) = x2 - y2

t, ( 2x + 1 ) . ( 4x2 - 2x + 1 ) = 8x3 - 1 

18 tháng 8 2018

a, 3x3 . 5x2 = 15x5

b, 2x . ( 3x2 + 2x ) = 6x3 + 4x2

c, -3xy . ( 2x + 5y ) = -6x2y +-15xy2

d, 3x2. ( 6 - x2 + 2x ) = 18x2 - 3x3 + 6x3

e, ( x + 2 ) . ( x + 3 ) = x2 + 5x + 6

i,  ( x - 4 ) . ( x + 4 ) = x2 - 16

h, ( 1 - 2x ) . ( 3x + 2 ) = 2 - 6x2 - x

k, ( x - y ) . ( x + y ) = x2 - y2

t, ( 2x + 1 ) . ( 4x2 - 2x + 1 ) = 8x3 - 1 

a) Ta có: \(\left(2x+3\right)^2-\left(5+x\right)\left(2x+3\right)=0\)

\(\Leftrightarrow\left(2x+3\right)\left(2x+3+5+x\right)=0\)

\(\Leftrightarrow\left(2x+3\right)\left(3x+8\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+3=0\\3x+8=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=-3\\3x=-8\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-3}{2}\\x=\frac{-8}{3}\end{matrix}\right.\)

Vậy: \(x\in\left\{\frac{-3}{2};\frac{-8}{3}\right\}\)

b) Ta có: \(\left(2x+5\right)^2-\left(2x-5\right)^2=6x+8\)

\(\Leftrightarrow\left(2x+5+2x-5\right)\left(2x+5-2x+5\right)-6x-8=0\)

\(\Leftrightarrow40x-6x-8=0\)

\(\Leftrightarrow34x=8\)

\(\Leftrightarrow x=\frac{8}{34}=\frac{4}{17}\)

Vậy: \(x=\frac{4}{17}\)

c) Ta có: \(\left(4x+3\right)^2=4\left(x-1\right)^2\)

\(\Leftrightarrow16x^2+24x+9=4\left(x^2-2x+1\right)\)

\(\Leftrightarrow16x^2+24x+9-4x^2+8x-4=0\)

\(\Leftrightarrow12x^2+32x+5=0\)

\(\Leftrightarrow12x^2+2x+30x+5=0\)

\(\Leftrightarrow2x\left(6x+1\right)+5\left(6x+1\right)=0\)

\(\Leftrightarrow\left(6x+1\right)\left(2x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}6x+1=0\\2x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}6x=-1\\2x=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-1}{6}\\x=\frac{-5}{2}\end{matrix}\right.\)

Vậy: \(x\in\left\{\frac{-1}{6};\frac{-5}{2}\right\}\)

d) Ta có: \(\left(7x-1\right)\left(3x-2\right)-49x^2+14x=1\)

\(\Leftrightarrow\left(7x-1\right)\left(3x-2\right)-\left(49x^2-14x+1\right)=0\)

\(\Leftrightarrow\left(7x-1\right)\left(3x-2\right)-\left(7x-1\right)^2=0\)

\(\Leftrightarrow\left(7x-1\right)\left[3x-2-\left(7x-1\right)\right]=0\)

\(\Leftrightarrow\left(7x-1\right)\left(3x-2-7x+1\right)=0\)

\(\Leftrightarrow\left(7x-1\right)\left(-4x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}7x-1=0\\-4x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}7x=1\\-4x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{7}\\x=\frac{-1}{4}\end{matrix}\right.\)

Vậy: \(x\in\left\{\frac{1}{7};\frac{-1}{4}\right\}\)

15 tháng 8 2015

B=[x^3+3xy(x+y)+y^3]-2(x^2+2xy+y^2)+3(x+y)+10

B=(x+y)^3-2(x+y)^2+3(x+y)+10

Thay vào

19 tháng 6 2021

a, \(\left(x-15\right)\left(x+15\right)-\left(x+2\right)^2-\left(x-5\right)^2\)

\(=x^2-225-x^2-4x-4-x^2+10x-25\)

\(=-x^2+6x-254\)

b, \(\left(2x-1\right)\left(2x+1\right)+\left(x+9\right)^2-\left(x-3\right)^2\)

\(=4x^2-1+x^2+18x+81-x^2+6x-9=4x^2+24x+71\)

c, \(\left(7x-3\right)^2-\left(x-5\right)\left(x+5\right)-\left(2x+4\right)^2\)

\(=49x^2-42x+9-x^2+25-4x^2-16x-16=44x^2-58x+18\)

AH
Akai Haruma
Giáo viên
23 tháng 10 2018

a)

\(2x+3=(2x+3)^2\)

\(\Leftrightarrow (2x+3)^2-(2x+3)=0\)

\(\Leftrightarrow (2x+3)(2x+3-1)=0\)

\(\Leftrightarrow (2x+3)(2x+2)=0\Rightarrow \left[\begin{matrix} 2x+3=0\\ 2x+2=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=-\frac{3}{2}\\ x=-1\end{matrix}\right.\)

b) \((x-5)^2=5-x\)

\(\Leftrightarrow (x-5)^2+(x-5)=0\)

\(\Leftrightarrow (x-5)(x-5+1)=0\)

\(\Leftrightarrow (x-5)(x-4)=0\)

\(\Rightarrow \left[\begin{matrix} x-5=0\\ x-4=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=5\\ x=4\end{matrix}\right.\)

c) \((x+2)^3=x+2\)

\(\Leftrightarrow (x+2)^3-(x+2)=0\)

\(\Leftrightarrow (x+2)[(x+2)^2-1]=0\)

\(\Leftrightarrow (x+2)(x+2-1)(x+2+1)=0\)

\(\Leftrightarrow (x+2)(x+1)(x+3)=0\)

\(\Rightarrow \left[\begin{matrix} x+2=0\\ x+1=0\\ x+3=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=-2\\ x=-1\\ x=-3\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
23 tháng 10 2018

d)

\(|3x-1|=(1-3x)^2\)

\(\Leftrightarrow |3x-1|=|3x-1|^2\)

\(\Leftrightarrow |3x-1|^2-|3x-1|=0\)

\(\Leftrightarrow |3x-1|(|3x-1|-1)=0\)

\(\Rightarrow \left[\begin{matrix} |3x-1|=0\\ |3x-1|-1=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} |3x-1|=0\\ |3x-1|=1\end{matrix}\right.\)

\(\Rightarrow \left[\begin{matrix} 3x-1=0\\ 3x-1=\pm 1\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{1}{3}\\ x=\frac{2}{3}\\ x=0\end{matrix}\right.\)

e)

\(2x+(x+3)(3-x)+(x+1)(x-1)=7\)

\(\Leftrightarrow 2x+(3^2-x^2)+(x^2-1^2)=7\)

\(\Leftrightarrow 2x=-1\Rightarrow x=-\frac{1}{2}\)

1: \(\Leftrightarrow5x^2+4x-1-2x^2+12x-18=3x^2+5x-2-x^2-8x-16+x^2-x\)

\(\Leftrightarrow3x^2+16x-19=3x^2-4x-18\)

=>20x=1

hay x=1/20

2: \(\Leftrightarrow5x^2-20x-41=x^2-10x+25+4x^2+4x+1-\left(x^2-2x\right)+\left(x-1\right)^2\)

\(\Leftrightarrow5x^2-20x-41=4x^2-4x+26+x^2-2x+1\)

\(\Leftrightarrow-20x-41=-6x+27\)

=>-14x=68

hay x=-34/7