Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(4^x-10.2^x+16=0\Leftrightarrow\left(2^x\right)^2-10.2^x+16=0\)
Đặt \(2^x=t\Rightarrow t^2-10t+16=0\Leftrightarrow\orbr{\begin{cases}t=8\\t=2\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}}\)
b. Đặt \(2x^2-3x-1=t\Rightarrow t^2-3\left(t-4\right)-16=0\)
\(\Leftrightarrow t^2-3t-28=0\Leftrightarrow\orbr{\begin{cases}t=7\\t=-4\end{cases}}\)
Thế vào rồi giải tiếp em nhé.
\(\left(2x-3-3+x\right)\left(2x-3+3-x\right)=0\)
\(\left(3x-6\right)x=0\)
\(\Rightarrow\orbr{\begin{cases}3x-6=0\\x=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=2\\x=0\end{cases}}\)
Vậy ....
\(\left(2x-3\right)^2-\left(3-x\right)^2=0\)
\(\Leftrightarrow\left(2x-3-3+x\right)\left(2x-3+3-x\right)=0\)
\(\Leftrightarrow\left(3x-9\right)x=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x-9=0\\x=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=3\\x=0\end{cases}}\)
vậy nghiệm của pt là x={3;0}
(3-12x)(x-1)+(12x-8)(x+2)+x2=52
3(x-1)-12x(x-1)+12x(x+2)-8(x+2)+x2=52
3x-3-12x2+12+12x2+24x-8x-16+x2=52
(3x+24x-8x)+(12-3-16)+(12x2-12x2+x2)=52
19x-7+x2=52
x(19-x)=52+7=59
mà 59 là số ng tố nên x rỗng
Vậy x E \(\theta\)
Tìm x , biết :
a) 2x(x-3)+5x-15=0
b) (x+1)2=x+1
c) x3+x=0
Ai giải dùm mình với ạ , mình đang cần gấp
Bài Làm:
a, \(2x\left(x-3\right)+5x-15=0\)
\(\Leftrightarrow2x\left(x-3\right)+5\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(2x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\2x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\frac{5}{2}\end{matrix}\right.\)
Vậy ...
b, \(\left(x+1\right)^2=x+1\)
\(\Leftrightarrow x^2+2x+1=x+1\)
\(\Leftrightarrow x^2+x=0\)
\(\Leftrightarrow x\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)
Vậy ...
c, \(x^3+x=0\)
\(\Leftrightarrow x^2\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)
Vậy ...
Good luck!
a/ A = 3x2 + 6x - 2 => 3A = 9x2 + 18x - 6 = (3x)2 + 2 . 3 . 3x + 32 - 15 = (3x + 3)2 - 15 \(\ge\)-15 => A\(\ge\)5
Đẳng thức xảy ra khi: (3x + 3)2 = 0 => x = -1
Vậy giá trị nhỏ nhất của A là -5 khi x = -1.
b/ B = (x + 1)(2x - 3) + 1 = 2x2 - 3x + 2x - 3 + 1 = 2x2 - x - 2
=> 2B = 4x2 - 2x - 4 = (2x)2 - 2 . 0,5 . 2x + 0,52 - 4,25 = (2x - 0,5)2 - 4,25 \(\ge\)-4,25 => B \(\ge\)-2,125
Đẳng thức xảy ra khi: (2x - 0,5)2 = 0 => x = 0,25
Vậy giá trị nhỏ nhất của B là -2,125 khi x = 0,25.
c/ C = x2 + y2 + 4x - 2y + 1 = x2 + y2 + 4x - 2y + 1 + 22 - 22 = (x2 + 4x + 22) + (y2 - 2y + 1) - 4 = (x + 2)2 + (y - 1)2 - 4 \(\ge\)-4
Đẳng thức xảy ra khi: (x + 2)2 = 0 và (y - 1)2 = 0 => x = -2 và y = 1
Vậy giá trị nhỏ nhất của C là -4 khi x = -2 và y = 1
mk làm giúp bn;
A = 3(x+1)2 -3 -2 => GTNN A = -5
B = 2x2 - x -2 = 2(x - 1/2)2 -1/2 -2 => GTNN B = -5/2
( tisk thì làm tip, k thi nghỉ khỏe)
\(2x^2-x.\left(x-2\right)-3=0\)
\(2x^2-x^2+2x-3=0\)
\(x^2+2x-3=0\)
\(\left(x^2-x\right)+\left(3x-3\right)=0\)
\(x.\left(x-1\right)+3.\left(x-1\right)=0\)
\(\left(x-1\right)\left(x+3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-1=0\\x+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-3\end{cases}}}\)
Vậy \(\orbr{\begin{cases}x=1\\x=-3\end{cases}}\)
2x2 - x.( x - 2 ) - 3 = 0
\(\Leftrightarrow2x^2-x^2+2x-3=0\)
\(\Leftrightarrow x^2+2x-3=0\)
\(\Leftrightarrow x^2-x+3x-3=0\)
\(\Leftrightarrow x\left(x-1\right)+3\left(x-1\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+3=0\\x-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-3\\x=1\end{cases}}\)
Vậy....