Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, (x-5).(x-1) >0
<=> x-5>0 và x-1>0
<=> x-5>0
<=> x>5
x-1>0
<=> x>1
Vậy x>5
b, (2x-3).(x+1) <0
<=> 2x-3<0 và x+1<0
2x-3<0 <=> 2x<3 <=> x<2/3
x+1<0 <=> x<-1
Vậy x<2/3
c, 2x2 - 3x +1>0
<=> 2x2 - 2x- x +1>0
<=>(x-1). (2x-1) >0
<=> x-1>0 và 2x-1>0
x-1>0 <=> x>1
2x-1>0 <=> 2x>1 <=> x>1/2
Vậy x>1/2
b, \(\left(4x+2\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow4x+2=0\) (Vì \(x^2+1>0\forall x\))
\(\Leftrightarrow x=\frac{-1}{2}\)
Vậy phương trình có nghiệm \(x=\frac{-1}{2}.\)
c, \(\left(x^2-4\right)+\left(x-2\right)\left(3-2x\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2+3-2x\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(5-x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\5-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=5\end{matrix}\right.\)
Vậy phương trình có tập nghiệm \(S=\left\{2;5\right\}\).
d, \(3x^2+2x-1=0\)
\(\Leftrightarrow3x^2+3x-x-1=0\)
\(\Leftrightarrow3x\left(x+1\right)-\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(3x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\frac{1}{3}\end{matrix}\right.\)
Vậy phương trình có tập nghiệm \(S=\left\{-1;\frac{1}{3}\right\}\).
a) \(2x\left(2x+5\right)-4x\left(x-3\right)=7\)
\(4x^2+10x-4x^2+12x=7\)
\(22x=7\Rightarrow x=0,31\)
b) \(\left(x+2\right)\left(x-2\right)-\left(x+1\right)^2=2\)
\(\left(x^2-4\right)-\left(x^2+2x+1\right)=2\)
\(x^2-4-x^2-2x-1=2\)
\(-2x=7\Rightarrow x=-3,5\)
c) \(\left(x+2\right)\left(x-1\right)-\left(x+3\right)\left(x-2\right)=0\)
\(x^2-x+2x-2-x^2+2x+3x-6=0\)
\(6x=8\Rightarrow x=1,3\)
a. \(9\left(x+2\right)-3\left(x+2\right)=0\)
\(\Leftrightarrow9x+18-3x-6=0\)
\(\Leftrightarrow6x+12=0\)
\(\Leftrightarrow x=-2\)
e. \(\left(2x-1\right)^2-45=0\)
\(\Leftrightarrow4x^2-2x+1-45=0\)
\(\Leftrightarrow4x^2-2x-44=0\)
Đến đó tự giải tiếp nha!
c. \(2\left(2x-5\right)-3x=0\)
\(\Leftrightarrow4x-10-3x=0\)
\(\Leftrightarrow x-10=0\)
\(\Leftrightarrow x=10\)
g. \(2x^2-6x=0\)
\(\Leftrightarrow2x\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)
a: \(\Leftrightarrow\dfrac{x+5}{2x-1}+\dfrac{2x-1}{x+5}-2=0\)
\(\Leftrightarrow\left(x+5\right)\left(x+5\right)+\left(2x-1\right)^2-2\left(2x-1\right)\left(x+5\right)=0\)
\(\Leftrightarrow x^2+10x+25+4x^2-4x+1-2\left(2x^2+10x-x-5\right)=0\)
\(\Leftrightarrow5x^2+6x+26-4x^2-18x+10=0\)
\(\Leftrightarrow x^2-12x+36=0\)
=>x=6
b: \(\dfrac{9x-27}{2x-7}-\dfrac{8x-28}{x-3}=0\)
\(\Leftrightarrow9\left(x-3\right)^2-4\left(2x-7\right)^2=0\)
\(\Leftrightarrow\left(3x-9\right)^2-\left(4x-14\right)^2=0\)
\(\Leftrightarrow\left(3x-9-4x+14\right)\left(3x-9+4x-14\right)=0\)
\(\Leftrightarrow\left(5-x\right)\left(7x-23\right)=0\)
hay \(x\in\left\{5;\dfrac{23}{7}\right\}\)
a: \(x^2\left(2x-3\right)+8x-12=0\)
\(\Leftrightarrow\left(2x-3\right)\left(x^2+4\right)=0\)
=>2x-3=0
hay x=3/2
b: \(\Leftrightarrow\left(2x-5\right)\left(2x+10\right)-\left(2x-5\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(2x-5\right)\left(2x+10-x+1\right)=0\)
=>(2x-5)(x+11)=0
=>x=5/2 hoặc x=-11
c: \(\Leftrightarrow2x\left(x^2-16\right)=0\)
\(\Leftrightarrow x\left(x-4\right)\left(x+4\right)=0\)
hay \(x\in\left\{0;4;-4\right\}\)
a) 2x(x-3)+5(x-3)=0
\(\Leftrightarrow\left(x-3\right)\left(2x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\2x+5=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\frac{5}{2}\end{matrix}\right.\)
Vậy: phương trình đã cho có tập nghiệm S=\(\left\{3;-\frac{5}{2}\right\}\)
2x3 - x2 + 2x - 1 = 0
⇔ x2( 2x - 1 ) + ( 2x - 1 ) = 0
⇔ ( 2x - 1 )( x2 + 1 ) = 0
⇔ 2x - 1 = 0 hoặc x2 + 1 = 0
⇔ x = 1/2 ( x2 + 1 ≥ 1 > 0 ∀ x )