K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 8 2017

2x = 8y + 1

2x luôn có chữ số tận cùng là 2 ; 4 ; 8 ; 6 

8y + 1 = 2x nên 8y phải có chữ số tận cùng là 1 ; 3 ; 7 ; 5

Nhưng 8y chỉ có thể có tận cùng là 8 ; 4 ; 2 ; 6

Vậy không tồn tại bất kì giá trị x;y nào thỏa mãn . 

20 tháng 8 2017

bạn ơi, phải là 8^(y+1)

15 tháng 1 2017

 ta có 8*(x-2009)^2 >= 0 nên 25 - y^2 >=0 hay 5 >=y >= 
+ y = 5 => x = 2009 
+ y = 4 => ko thỏa mãn 
+ y = 3... 
+ y = 2.. 
+ y =1.. 
+ y = 0.. 
=> nghiệm duy nhất x = 2009 và y =5

8 tháng 10 2016

\(2x=3y=5z\Rightarrow\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}\)

Áp dụng t/c dãy tỉ số = nhau ta có:

\(\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}=\frac{x+y+z}{\frac{1}{2}+\frac{1}{3}+\frac{1}{5}}=\frac{-33}{\frac{31}{30}}=-\frac{990}{31}\)

\(\frac{x}{\frac{1}{2}}=-\frac{990}{31}\Rightarrow x=-\frac{495}{31}\)

\(\frac{y}{\frac{1}{3}}=-\frac{990}{31}\Rightarrow y=-\frac{330}{31}\)

\(\frac{z}{\frac{1}{5}}=-\frac{990}{31}\Rightarrow z=-\frac{198}{31}\)

Vậy ...

8 tháng 10 2016

Có: \(2x=3y=5z\)

=> \(\frac{2x}{30}=\frac{3y}{30}=\frac{5z}{30}\)

=> \(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)

Áp dụng tc của dãy tỉ số bằng nhau ta có:
\(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x+y+z}{15+10+6}=\frac{-33}{31}\)

=> \(\begin{cases}x=-\frac{495}{31}\\y=-\frac{330}{31}\\z=-\frac{198}{31}\end{cases}\)

 

8 tháng 10 2016

a) 2x = 3y = 5z 

=> \(\frac{x}{3}=\frac{y}{5}=\frac{z}{2}\)

Áp dụng tính chất dãy tỉ số = nhau , ta có : 

\(\frac{x}{3}=\frac{y}{5}=\frac{z}{2}=\frac{x+y+z}{3+5+2}=\frac{-33}{10}\)

=> x = 3.(-33/10) = -99/10 

     y = 5.(-33/10) = -165/10

     z = 2.(-33/10) = -66/10 

30 tháng 6 2019

đề là \(x^2-\frac{1}{x^2}\)hay là \(x^2+\frac{1}{x^2}\)vậy? Xem lại đề thử xem!

30 tháng 6 2019

\(x^2+\frac{1}{x^2}+y^2+\frac{1}{y^2}=4\)

\(\Leftrightarrow\left(x^2-2+\frac{1}{x^2}\right)+\left(y^2-2+\frac{1}{y^2}\right)=0\)

\(\Leftrightarrow\left(x-\frac{1}{x}\right)^2+\left(y-\frac{1}{y}\right)^2=0\)

\(\Leftrightarrow\left(x;y\right)=\left(1;1\right);\left(1;-1\right);\left(-1;1\right);\left(-1;-1\right)\) 

3 tháng 2 2020

mai bn pai đi hok a

3 tháng 2 2020

lê phạm anh thư Học thêm nha...

18 tháng 12 2018

Có: \(\left(x-2\right)^{2018}+\left|y^2-9\right|^{2017}=0\)

Suy ra: \(\hept{\begin{cases}\left(x-2\right)^{2018}=0\\\left|y^2-9\right|^{2017}=0\end{cases}}\)

<=> \(\hept{\begin{cases}x-2=0\\\left|y^2-9=0\right|\end{cases}}\)

<=> \(\hept{\begin{cases}x=2\\y=\orbr{\begin{cases}3\\-3\end{cases}}\end{cases}}\)\(\hept{\begin{cases}x=2\\y=\orbr{\begin{cases}3\\-3\end{cases}}\end{cases}}\)

19 tháng 12 2018

chưa chắc đã đúng đâu Nguyệt Phượng nhé
trường hợp của bạn chỉ dùng khi biểu thức trên là:(x-2)^2018* |y^2-9|^ 2017=0 thôi bạn nhé