Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,4x=5y\:\Rightarrow\frac{x}{5}=\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{12}\)
\(4y=6z\Rightarrow\frac{y}{6}=\frac{z}{4}\Rightarrow\frac{y}{12}=\frac{z}{8}\)
\(\Rightarrow\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)
\(\Rightarrow\frac{x}{15}=\frac{2y}{24}=\frac{3z}{24}\)
\(\Rightarrow\frac{x-2y+3z}{15-24+24}=\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)
\(\Rightarrow\frac{5}{15}=\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)
\(\Rightarrow\frac{1}{3}=\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{1}{3}\cdot15=5\\y=\frac{1}{3}\cdot12=4\\z=\frac{1}{3}\cdot8=\frac{8}{3}\end{cases}}\)
khó quá
k nhé tớ k lại cho
hihihiihih ^_^ ~ hihihihihih
Vì \(\left(3x-2y\right)^{100}\ge0\forall x,y\inℤ\)
\(|5y-6z|\ge0\forall y,z\inℤ\Rightarrow|5y-6z|^{153}\ge0\forall y,z\inℤ\)
Nên \(\Rightarrow\hept{\begin{cases}(3x-2y)^{100}=0\\|5y-6z|^{153}=0\end{cases}}\Rightarrow\hept{\begin{cases}3x-2y=0\\5y-6z=0\end{cases}}\Rightarrow\hept{\begin{cases}3x=2y\\5y=6z\end{cases}\Rightarrow\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\\frac{y}{6}=\frac{z}{5}\end{cases}}}\)
Từ \(\frac{x}{2}=\frac{y}{3};\frac{y}{6}=\frac{z}{5}\)suy ra\(\frac{x}{4}=\frac{y}{6}=\frac{z}{5}\)
Ta có
\(\frac{x}{4}=\frac{y}{6}=\frac{z}{5}=\frac{2x}{8}=\frac{5y}{30}=\frac{3z}{15}=\frac{2x-5y+3z}{8-30+15}=\frac{56}{-7}=-8\)
Do đó
\(\frac{x}{4}=-8\Rightarrow x=-32\)
\(\frac{y}{6}=-8\Rightarrow y=-48\)
\(\frac{z}{5}=-8\Rightarrow z=-40\)
Vậy \(x=-32;y=-48;z=-40\)
CM : ( 3x - 2y )^2010 = 0 , / 5y - 6z /^2011 = 0
=> 3x - 2y = 0 , 5y - 6z = 0
=> 3x = 2y , 5y = 6z
=> x/2 = y/3 , y/6 = z/5
=> x/4 = y/6 , y/6 =z/5
=> x/4 = y/6 = z/5
=> 2x/ 8 , 5y/30 , 3z/15
Áp dụng tính chất DTSBN , ta có :
2x/8 = 5y /30 = 3z / 15 = 2x - 5y + 3z / 8 - 30 + 15 = 54/-7 = -54 /7
Rồi tính ra là xong
a) Ta có : \(\frac{x-1}{2}=\frac{y+3}{4}\Leftrightarrow\left(x-1\right).4=\left(y+3\right).2\Leftrightarrow4x-4=2y+6\Leftrightarrow4x-2y=10\Leftrightarrow x=\frac{10+2y}{4}\left(1\right)\)
\(\frac{y+3}{4}=\frac{z-5}{6}\Leftrightarrow\left(y+3\right).6=\left(z-5\right).4\Leftrightarrow6y+18=4z-20\Leftrightarrow6y-4z=-38\Rightarrow z=\frac{6y+38}{4}\left(2\right)\)Thay (1) và (2) vào biểu thức \(5x-3y-4z=20\); ta được :
\(\frac{5.\left(10+2y\right)}{4}-3y-\frac{4.\left(6y+38\right)}{4}=20\)
\(\Leftrightarrow50+10y-12y-24y-152=80\)
\(\Leftrightarrow-26y=182\Rightarrow y=-7\)
Với \(y=-7\Rightarrow x=\frac{10+2.-7}{4}=-1;z=\frac{6.-7+38}{4}=-1\)
Vậy ....
nhầm đoạn cuối 54/-7 = -54/7
=> x= -216/7 ; y=-324/7 ; z= -270/7
\(\left(3x-2y\right)^{2014}\ge0\) ; \(\left|5y-6z\right|^{2015}\ge0\)
\(\Rightarrow\left(3x-2y\right)^{2014}+\left|5y-6z\right|^{2015}\ge0\)
mà \(\left(3x-2y\right)^{2014}+\left|5y-6z\right|^{2015}=0\)
\(\Rightarrow\left(3x-2y\right)^{2014}=\left|5y-6z\right|^{2015}=0\Rightarrow3x-2y=5y-6z=0\)
\(\Rightarrow3x=2y;5y=6z\)
\(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{4}=\frac{y}{6}\left(1\right)\)
\(5y=6z\Rightarrow\frac{y}{6}=\frac{z}{5}\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) \(\Rightarrow\frac{x}{4}=\frac{y}{6}=\frac{z}{5}=\frac{2x}{8}=\frac{5y}{30}=\frac{3z}{15}=\frac{2x-5y+3z}{8-30+15}=\frac{54}{-7}=-\frac{7}{54}\) [áp dụng dãy tỉ số bằng nhau]
=> x= -14/27 ; y= -7/9 ; z= -35/51
Theo đề Bài :
5x = 6y => 35x = 30y
5y = 6z => 30y = 36z
=> 35x = 30y = 36z
Ta có : BCNN(35,30,36) = 1260
=> \(\frac{35x}{1260}=\frac{30y}{1260}=\frac{36z}{1260}\)
=> \(\frac{x}{36}=\frac{y}{42}=\frac{z}{35}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x}{36}=\frac{y}{42}=\frac{z}{35}=\frac{x+2y-3z}{36+84-105}=\frac{42}{15}=\frac{14}{5}\)
=> \(\frac{x}{36}=\frac{14}{5}\Rightarrow x=100,8\)
=> \(\frac{y}{42}=\frac{14}{5}\Rightarrow y=117,6\)
=> \(\frac{z}{35}=\frac{14}{5}\Rightarrow z=98\)
CHO XIN TÍCH ĐÚNG NHA MỌI NGƯỜI
Vì (3x-2)^2010 và |5y-6z|^2011 >= 0
=> (3x-2)^2010 + |5y-6z|^2011 > = 0
=> (3x-2)^2010 + |5y-6z|^2011 = 0 <=> 3x-2=0 và 5y-6z=0
<=> x=3/2 và 5y=6z => y=6/5z
Lại có : 2x-5y+3z=54
=> 2.3/2 - 5 . 6/5z + 3z=54
=> 3 - 6z + 3z = 54
=> 3-3z=54
=> 3z=3-54 = -51
=> z=-51 : 3 = -17
=> y = 6/5.(-17) = -102/5
Vậy ........
Tk mk nha
Ta có :\(15x=10y=6z\Rightarrow\hept{\begin{cases}15x=10y\\10y=6z\end{cases}}\Rightarrow\hept{\begin{cases}3x=2y\\5y=3z\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\\frac{y}{3}=\frac{z}{5}\end{cases}}\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)
Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\Rightarrow\hept{\begin{cases}x=2k\\y=3k\\z=5k\end{cases}}\)
Khi đó 5x3 + 2y3 - z3 = 31
=> 5(2k)3 + 2(3k)3 - (5k)3 = 31
=> 40k3 + 54k3 - 125k3 = 31
=> -31k3 = 31
=> k3 = -1
=> k = -1
=> x = -2 ; y = -3 ; z = -5
b) Ta có 7x = 14y = 6z => \(\hept{\begin{cases}7x=14y\\14y=6z\end{cases}}\Rightarrow\hept{\begin{cases}x=2y\\7y=3z\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{2}=\frac{y}{1}\\\frac{y}{3}=\frac{z}{7}\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{6}=\frac{y}{3}\\\frac{y}{3}=\frac{z}{7}\end{cases}}\Rightarrow\frac{x}{6}=\frac{y}{3}=\frac{z}{7}\)
Đặt \(\frac{x}{6}=\frac{y}{3}=\frac{z}{7}=k\Rightarrow\hept{\begin{cases}x=6k\\y=3k\\z=7k\end{cases}}\)
Khi đó 2x2 - 3y2 = 5
<=> 2.(6k)2 - 3.(3k)2 = 5
=> 72k2 - 27k2 = 5
=> 45k2 = 5
=> k2 = 1/9
=> k = \(\pm\frac{1}{3}\)
Nếu k = 1/3 => x = 2 ; y = 1 ; z = 7/3
Nếu k = -1/3 => x = -2 ; y = - 1 ; z = -7/3
Vậy các cặp (x;y;z) thỏa mãn là : (2;1;7/3) ; (-2 ; - 1; -7/3)
c) Ta có : \(3x=8y=5z\Rightarrow\frac{3x}{120}=\frac{8y}{120}=\frac{5z}{120}\Rightarrow\frac{x}{40}=\frac{y}{15}=\frac{z}{24}\)
Đặt \(\frac{x}{40}=\frac{y}{15}=\frac{z}{24}=k\Rightarrow\hept{\begin{cases}x=40k\\y=15k\\z=24k\end{cases}}\)
Khi đó |x - 2y| = 5
<=> |40k - 2.15k| = 5
=> |10k| = 5
=> \(\orbr{\begin{cases}10k=5\\10k=-5\end{cases}}\Rightarrow\orbr{\begin{cases}k=\frac{1}{2}\\k=-\frac{1}{2}\end{cases}}\)
Nếu k = 5 => x = 20 ; y = 7,5 ; z = 12
Nếu k = -5 => x = -20 ; y =-7,5 ; z = -12
d) 4x = 5y = 6z => \(\frac{4x}{60}=\frac{5y}{60}=\frac{6z}{60}\Rightarrow\frac{x}{15}=\frac{y}{12}=\frac{z}{10}\)
Đặt \(\frac{x}{15}=\frac{y}{12}=\frac{z}{10}=k\Rightarrow\hept{\begin{cases}x=15k\\y=12k\\z=10k\end{cases}}\)
Khi đó (3x - 2y)2 = 16
<=> (3.15k - 2.12k)2 = 16
=> (45k -24k)2 = 16
=> (21k)2 = 16
=> \(\orbr{\begin{cases}21k=4\\21k=-4\end{cases}}\Rightarrow\orbr{\begin{cases}k=\frac{4}{21}\\k=-\frac{4}{21}\end{cases}}\)
Nếu k = 4/21 => x = 20/7 ; y = 16/7 ; z = 40/21
Nếu k = -4/21 => x = -20/7 ; y = -16/7 ; z = -40/21
Giải:
\(2x=5y=6z\Rightarrow\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{z}{6}\Rightarrow\dfrac{x}{2}=\dfrac{2y}{10}=\dfrac{3z}{18}_{\left(1\right)}\)và \(3x-z+2y=24_{\left(2\right)}.\)
Từ \(_{\left(1\right)}\) và \(_{\left(2\right)}\), kết hợp tính chất dãy tỉ số bằng nhau có:
\(\dfrac{x}{2}=\dfrac{2y}{10}=\dfrac{3z}{18}=\dfrac{3z-x+2y}{18-2+10}=\dfrac{24}{26}=\dfrac{12}{13}.\)
Từ đó:
\(\dfrac{x}{2}=\dfrac{12}{13}\Rightarrow x=\dfrac{2.12}{13}=\dfrac{24}{13}.\)
\(\dfrac{2y}{10}=\dfrac{12}{13}\Rightarrow2y=\dfrac{10.12}{13}=\dfrac{120}{13}\Rightarrow y=\dfrac{60}{13}.\)
\(\dfrac{3z}{18}=\dfrac{12}{13}\Rightarrow3x=\dfrac{18.12}{13}=\dfrac{216}{13}\Rightarrow z=\dfrac{72}{13}.\)
Vậy: \(\left[{}\begin{matrix}x=\dfrac{24}{13}.\\y=\dfrac{60}{13}.\\z=\dfrac{72}{13}.\end{matrix}\right.\)